German business cycle forecasts, asymmetric loss and financial variables
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2011.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Arturo Estrella & Frederic S. Mishkin, 1998.
"Predicting U.S. Recessions: Financial Variables As Leading Indicators,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
- Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
- Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
- Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
- Andrews, Donald W K, 1991.
"Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation,"
Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877, Cowles Foundation for Research in Economics, Yale University.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
- James H. Stock & Mark W.Watson, 2003.
"Forecasting Output and Inflation: The Role of Asset Prices,"
Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
- James H. Stock & Mark W. Watson, 2001. "Forecasting output and inflation: the role of asset prices," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
- Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010.
"Evaluating German business cycle forecasts under an asymmetric loss function,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
- Joerg Doepke & Ulrich Fritsche & Boriss Siliverstovs, 2009. "Evaluating German business cycle forecasts under an asymmetric loss function," KOF Working papers 09-237, KOF Swiss Economic Institute, ETH Zurich.
- Joerg Doepke & Ulrich Fritsche & Boriss Siliverstovs, 2009. "Evaluating German Business Cycle Forecasts Under an Asymmetric Loss Function," Macroeconomics and Finance Series 200905, University of Hamburg, Department of Socioeconomics.
- Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008.
"Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?,"
Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
- Allan Timmermann & Graham Elliott & Ivana Komunjer, 2004. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Econometric Society 2004 North American Summer Meetings 601, Econometric Society.
- Graham Elliott & Ivana Komunjer & Allan Timmermann, 2005. "Biases In Macroeconomic Forecasts: Irrationality Or Asymmetric Loss?," CAMA Working Papers 2005-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Arturo Estrella & Mary R. Trubin, 2006. "The yield curve as a leading indicator: some practical issues," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 12(Jul).
- Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
- Adrian, Tobias & Estrella, Arturo, 2008.
"Monetary tightening cycles and the predictability of economic activity,"
Economics Letters, Elsevier, vol. 99(2), pages 260-264, May.
- Tobias Adrian & Arturo Estrella, 2009. "Monetary tightening cycles and the predictability of economic activity," Staff Reports 397, Federal Reserve Bank of New York.
- Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
- Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
- Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
- Foltas, Alexander, 2024. "Inefficient forecast narratives: A BERT-based approach," Working Papers 45, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
- Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
- Chatagny, Florian & Siliverstovs, Boriss, 2015. "Evaluating rationality of level and growth rate forecasts of direct tax revenues under flexible loss function: Evidence from Swiss cantons," Economics Letters, Elsevier, vol. 134(C), pages 65-68.
- Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
- Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
- Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
- Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
- Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
- Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
- Capistrán, Carlos, 2008.
"Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?,"
Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
- Carmona, Carlos Capistran, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," University of California at San Diego, Economics Working Paper Series qt6v28v0b6, Department of Economics, UC San Diego.
- Capistrán Carlos, 2006. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Working Papers 2006-14, Banco de México.
- Carlos Capistrán-Carmona, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Computing in Economics and Finance 2005 127, Society for Computational Economics.
- Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
- Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.
- Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001.
"Assessing GMM Estimates of the Federal Reserve Reaction Function,"
Econometrics
0111003, University Library of Munich, Germany.
- Florens, C. & Jondeau, E. & Le Bihan, H., 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Working papers 83, Banque de France.
- Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017.
"Predicting recessions with boosted regression trees,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions With Boosted Regression Trees," Working Papers 2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019.
"Time-varying risk aversion and realized gold volatility,"
The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2018. "Time-Varying Risk Aversion and Realized Gold Volatility," Working Papers 201881, University of Pretoria, Department of Economics.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023.
"A higher-order correct fast moving-average bootstrap for dependent data,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
- Davide La Vecchia & Alban Moor & Olivier Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Papers 2001.04867, arXiv.org, revised Jan 2022.
- Davide La Vecchia & Alban Moor & O. Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Swiss Finance Institute Research Paper Series 20-01, Swiss Finance Institute.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2020. "A higher-order correct fast moving-average bootstrap for dependent data," Working Papers unige:129395, University of Geneva, Geneva School of Economics and Management.
- Clark, Todd & McCracken, Michael, 2013.
"Advances in Forecast Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201,
Elsevier.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers 2011-025, Federal Reserve Bank of St. Louis.
- McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020.
"Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend,"
Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
- Stephen McKnight & Alexander Mihailov & Kerry Patterson & Fabio Rumler, 2014. "The Predictive Performance of Fundamental Inflation Concepts: An Application to the Euro Area and the United States," Economics Discussion Papers em-dp2014-03, Department of Economics, University of Reading.
- Stephen McKnight & Alexander Mihailov & Fabio Rumler, 2018. "NKPC-Based Inflation Forecasts with a Time-Varying Trend," Serie documentos de trabajo del Centro de Estudios Económicos 2018-05, El Colegio de México, Centro de Estudios Económicos.
- Ekaterini Panopoulou & Nikitas Pittis & Sarantis Kalyvitis, 2010.
"Looking far in the past: revisiting the growth-returns nexus with non-parametric tests,"
Empirical Economics, Springer, vol. 38(3), pages 743-766, June.
- Ekaterini Panopoulou & N. Pittis & S. Kalyvitis, 2006. "Looking far in the past:Revisiting the growth-returns nexus with non-parametric tests," Economics Department Working Paper Series n1660306, Department of Economics, National University of Ireland - Maynooth.
- Ekaterini Panopoulou & Nikitas Pittis & Sarantis Kalyvitis, 2006. "Looking far in the past: Revisiting the growth-returns nexus with non-parametric tests," The Institute for International Integration Studies Discussion Paper Series iiisdp134, IIIS.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017.
"Applying a microfounded-forecasting approach to predict Brazilian inflation,"
Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2016. "Applying a Microfounded-Forecasting Approach to Predict Brazilian Inflation," Working Papers Series 436, Central Bank of Brazil, Research Department.
- Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
- Christiansen, Charlotte, 2013.
"Predicting severe simultaneous recessions using yield spreads as leading indicators,"
Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.
- Charlotte Christiansen, 2011. "Predicting Severe Simultaneous Recessions Using Yield Spreads as Leading Indicators," CREATES Research Papers 2011-20, Department of Economics and Business Economics, Aarhus University.
- Hall, Alastair R. & Inoue, Atsushi, 2003.
"The large sample behaviour of the generalized method of moments estimator in misspecified models,"
Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
- Alastair R. Hall & Atsushi Inoue, 2005. "The Large Sample Behaviour of the Generalized Method of Moments Estimator in Misspecified Models," Econometrics 0505002, University Library of Munich, Germany.
More about this item
Keywords
Macroeconomic forecasting; Asymmetric loss; Financial markets;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:114:y:2012:i:3:p:284-287. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.