IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v165y2019ic19.html
   My bibliography  Save this article

Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework

Author

Listed:
  • Dilekli, Naci
  • Cazcarro, Ignacio

Abstract

In this article, we employ an extended world trade model and rectangular choice of technology (WTM/RCOT) framework, which minimizes global factor costs subject to satisfying final demand and respecting region-specific factor constraints, to calculate the economic costs of achieving the United Nations Sustainable Development Goals (SDGs) for water and sanitation. We estimate how achieving these goals will affect factor use, trade balances, scarcity rents, and production in 19 regions of the world, drawing on an expanded database developed from the GTAP9 database, the developed model involves 64 technology columns and 74 rows of factors of production. On a theoretical level, this model contributes to the existing literature on the topic by using endogenous cost estimates that consider shifts in production and factor scarcity rents and by considering recycling and wastes within an input-output model, in which wastes can be modelled as input resources as well as waste outputs. We find that the additional factor costs of meeting the water and sanitation targets of the SDGs exceed US$100 billion annually, with a total cost of US$3.3 trillion from 2015 to 2030. These figures are similar to other recent works on the subject despite methodological differences. It also suggests that the worldwide SDG targets can be achieved with moderate costs relative to the total global GDP, especially in comparison to the high estimated cost of inaction. Predictably, in areas working toward water and sanitation SDGs (areas such as Sub-Saharan Africa, regions in South Asia, etc.), factor use costs increase, but not commensurately with the growth of coverage—some regions, such as areas of South America, notably have higher factor use costs along in proportion to the coverage. Indeed, Sub-Saharan Africa, which needs the highest increase in coverage, will not likely have as large increases in factor uses and would barely get scarcity rents. In general, regions with higher SDG targets will require further trade, especially additional imports of inputs such as chemicals and energy products. This trade will increase factor earnings in factor rich regions such as the European Union, Japan, and Korea.

Suggested Citation

  • Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
  • Handle: RePEc:eee:ecolec:v:165:y:2019:i:c:19
    DOI: 10.1016/j.ecolecon.2019.106376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800919301867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2019.106376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchin, Faye, 1990. "The conversion of biological materials and wastes to useful products," Structural Change and Economic Dynamics, Elsevier, vol. 1(2), pages 243-261, December.
    2. Yasushi Kondo & Shinichiro Nakamura, 2005. "Waste input-output linear programming model with its application to eco-efficiency analysis," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 393-408.
    3. Sato, Toshio & Qadir, Manzoor & Yamamoto, Sadahiro & Endo, Tsuneyoshi & Zahoor, Ahmad, 2013. "Global, regional, and country level need for data on wastewater generation, treatment, and use," Agricultural Water Management, Elsevier, vol. 130(C), pages 1-13.
    4. Leontief, Wassily & Duchin, Faye, 1986. "The Future Impact of Automation on Workers," OUP Catalogue, Oxford University Press, number 9780195036237.
    5. Duarte, Rosa & Sanchez-Choliz, Julio & Bielsa, Jorge, 2002. "Water use in the Spanish economy: an input-output approach," Ecological Economics, Elsevier, vol. 43(1), pages 71-85, November.
    6. Peter L. Daniels & Manfred Lenzen & Steven J. Kenway, 2011. "The Ins And Outs Of Water Use -- A Review Of Multi-Region Input--Output Analysis And Water Footprints For Regional Sustainability Analysis And Policy," Economic Systems Research, Taylor & Francis Journals, vol. 23(4), pages 353-370, October.
    7. Giljum, Stefan & Hubacek, Klaus & Sun, Laixiang, 2004. "Beyond the simple material balance: a reply to Sangwon Suh's note on physical input-output analysis," Ecological Economics, Elsevier, vol. 48(1), pages 19-22, January.
    8. Faye Duchin, 2005. "A world trade model based on comparative advantage with m regions, n goods, and k factors," Economic Systems Research, Taylor & Francis Journals, vol. 17(2), pages 141-162.
    9. Ignacio Cazcarro & Carlos A. López-Morales & Faye Duchin, 2016. "The global economic costs of the need to treat polluted water," Economic Systems Research, Taylor & Francis Journals, vol. 28(3), pages 295-314, September.
    10. Dietzenbacher, Erik, 2005. "Waste treatment in physical input-output analysis," Ecological Economics, Elsevier, vol. 55(1), pages 11-23, October.
    11. Koji Takase & Yasushi Kondo & Ayu Washizu, 2005. "An Analysis of Sustainable Consumption by the Waste Input‐Output Model," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 201-219, January.
    12. Shinichiro Nakamura & Kenichi Nakajima & Yasushi Kondo & Tetsuya Nagasaka, 2007. "The Waste Input‐Output Approach to Materials Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 11(4), pages 50-63, October.
    13. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    14. Shigemi Kagawa, 2005. "Inter-industry analysis, consumption structure, and the household waste production structure," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 409-423.
    15. Weisz, Helga & Duchin, Faye, 2006. "Physical and monetary input-output analysis: What makes the difference?," Ecological Economics, Elsevier, vol. 57(3), pages 534-541, May.
    16. Faye Duchin & Stephen Levine, 2012. "The rectangular sector-by-technology model: not every economy produces every product and some products may rely on several technologies simultaneously," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-11, December.
    17. Shinichiro Nakamura & Yasushi Kondo, 2002. "Input‐Output Analysis of Waste Management," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 39-63, January.
    18. Lin, Chen, 2009. "Hybrid input-output analysis of wastewater treatment and environmental impacts: A case study for the Tokyo Metropolis," Ecological Economics, Elsevier, vol. 68(7), pages 2096-2105, May.
    19. Chen Lin, 2011. "Identifying Lowest‐Emission Choices and Environmental Pareto Frontiers for Wastewater Treatment Wastewater Treatment Input‐Output Model based Linear Programming," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 367-380, June.
    20. Klaus Hubacek & Kuishuang Feng & Bin Chen & Shigemi Kagawa, 2016. "Linking Local Consumption to Global Impacts," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 382-386, June.
    21. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    22. Manfred Lenzen & Christian John Reynolds, 2014. "A Supply-Use Approach to Waste Input-Output Analysis," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 212-226, April.
    23. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    24. Sangwon Suh & Shigemi Kagawa, 2005. "Industrial ecology and input-output economics: an introduction," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 349-364.
    25. Nakamura, Shinichiro & Kondo, Yasushi, 2006. "A waste input-output life-cycle cost analysis of the recycling of end-of-life electrical home appliances," Ecological Economics, Elsevier, vol. 57(3), pages 494-506, May.
    26. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    27. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    28. Faye Duchin & Stephen H. Levine, 2011. "Sectors May Use Multiple Technologies Simultaneously: The Rectangular Choice-Of-Technology Model With Binding Factor Constraints," Economic Systems Research, Taylor & Francis Journals, vol. 23(3), pages 281-302, March.
    29. Whittington, Dale & Hanemann, W. Michael & Sadoff, Claudia & Jeuland, Marc, 2009. "The Challenge of Improving Water and Sanitation Services in Less Developed Countries," Foundations and Trends(R) in Microeconomics, now publishers, vol. 4(6–7), pages 469-609, September.
    30. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyuan Shen & Fengping Wu & Qianwen Yu & Zhaofang Zhang & Lina Zhang & Min Zhu & Zhou Fang, 2020. "Standardization of Exchanged Water with Different Properties in China’s Water Rights Trading," IJERPH, MDPI, vol. 17(5), pages 1-19, March.
    2. Juan-Manuel Valverde & Carmen Avilés-Palacios, 2021. "Circular Economy as a Catalyst for Progress towards the Sustainable Development Goals: A Positive Relationship between Two Self-Sufficient Variables," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    3. Abdelrahim A. M. Yahia & Ismaeel A. M. Ahmed & Nada R. A. ALhassan, 2021. "How Does the Degree of Export Dependence Affect Chinas Clean Drinking Water?," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 9(2), pages 179-198, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faye Duchin, 2017. "Resources for Sustainable Economic Development: A Framework for Evaluating Infrastructure System Alternatives," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    2. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    3. Glenn A. Aguilar-Hernandez & Carlos Pablo Sigüenza-Sanchez & Franco Donati & João F. D. Rodrigues & Arnold Tukker, 2018. "Assessing circularity interventions: a review of EEIOA-based studies," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    4. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    5. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    6. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    7. Maria Amaya & Faye Duchin & Erich Hester & John C. Little, 2022. "Applying a Coupled Hydrologic-Economic Modeling Framework: Evaluating Alternative Options for Reducing Impacts for Downstream Locations in Response to Upstream Development," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    8. Hasegawa Ryoji & Hirofumi Nakayama & Takayuki Shimoaka, 2017. "Analyzing material flow and value added associated with non-metallic mineral wastes in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-15, December.
    9. Huang, Rui & Tian, Lixin, 2021. "CO2 emissions inequality through the lens of developing countries," Applied Energy, Elsevier, vol. 281(C).
    10. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    11. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    12. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    13. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    15. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    16. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    17. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    18. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    19. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    20. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:165:y:2019:i:c:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.