IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v80y2023icp978-990.html
   My bibliography  Save this article

Does technological innovation bring better air quality?

Author

Listed:
  • Zhao, Qian
  • Ding, Longfei
  • Pirtea, Marilen Gabriel
  • Vǎtavu, Sorana

Abstract

This paper analyses the interrelation between technological innovation (TI) and air quality (AQ) using the bootstrap rolling-window subsample Granger test for China. We find that TI has a twofold impact on AQ. On the one hand, TI brings better AQ. This result proves the technique effect, indicating that TI can improve AQ by directly reducing air pollutants emissions and facilitating clean energy use. On the other hand, TI can make AQ worse when TI mainly focuses on utilising fossil fuels to expand production, which proves the scale effect. In turn, AQ can also influence TI; the direction of the influence is dependent on the severity of air pollution and the government’s response. This study provides important policy implications for coordinating innovation and environmental conservation to achieve sustainable development.

Suggested Citation

  • Zhao, Qian & Ding, Longfei & Pirtea, Marilen Gabriel & Vǎtavu, Sorana, 2023. "Does technological innovation bring better air quality?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 978-990.
  • Handle: RePEc:eee:ecanpo:v:80:y:2023:i:c:p:978-990
    DOI: 10.1016/j.eap.2023.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592623002412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2023.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    2. Qizhong Yang & Tsunehiro Otsuki & Etsuyo Michida, 2020. "Product-Related Environmental Regulation, Innovation, and Competitiveness: Empirical Evidence From Malaysian and Vietnamese Firms," International Economic Journal, Taylor & Francis Journals, vol. 34(3), pages 510-533, July.
    3. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    4. Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
    5. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    6. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    7. Su, Chi-Wei & Pang, Lidong & Umar, Muhammad & Lobonţ, Oana-Ramona & Moldovan, Nicoleta-Claudia, 2022. "Does gold's hedging uncertainty aura fade away?," Resources Policy, Elsevier, vol. 77(C).
    8. Tan, Zhidong & Yan, Lina, 2021. "Does air pollution impede corporate innovation?," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 937-951.
    9. Haoxuan Hu & Yuchen Zhang & Xi Rao & Yinghua Jin, 2021. "Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
    10. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    11. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    12. Philippe Aghion & Ufuk Akcigit & Antonin Bergeaud & Richard Blundell & David Hemous, 2019. "Innovation and Top Income Inequality," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 1-45.
    13. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    14. Michael E. Porter, 1991. "Towards a dynamic theory of strategy," Strategic Management Journal, Wiley Blackwell, vol. 12(S2), pages 95-117, December.
    15. Chi-Wei Su & Yannong Xie & Sadaf Shahab & Ch. Muhammad Nadeem Faisal & Muhammad Hafeez & Ghulam Muhammad Qamri, 2021. "Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO 2 Emission for BRICS," IJERPH, MDPI, vol. 18(1), pages 1-13, January.
    16. Su, Chi Wei & Qin, Meng & Chang, Hsu-Ling & Țăran, Alexandra-Mădălina, 2023. "Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate," Resources Policy, Elsevier, vol. 81(C).
    17. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    18. Zhang, Weike & Luo, Qian & Liu, Shiyuan, 2022. "Is government regulation a push for corporate environmental performance? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 105-121.
    19. Su, Chi Wei & Liu, Fangying & Stefea, Petru & Umar, Muhammad, 2023. "Does technology innovation help to achieve carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1-14.
    20. Ahmad, Najid & Youjin, Liu & Žiković, Saša & Belyaeva, Zhanna, 2023. "The effects of technological innovation on sustainable development and environmental degradation: Evidence from China," Technology in Society, Elsevier, vol. 72(C).
    21. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    22. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    23. Qin, Meng & Su, Chi-Wei & Pirtea, Marilen Gabriel & Dumitrescu Peculea, Adelina, 2023. "The essential role of Russian geopolitics: A fresh perception into the gold market," Resources Policy, Elsevier, vol. 81(C).
    24. Ghazi Shukur & Panagiotis Mantalos, 2000. "A simple investigation of the Granger-causality test in integrated-cointegrated VAR systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(8), pages 1021-1031.
    25. Yongyuan Ma & Ao Shen & Qingyuan Zhu & Peng Wang, 2022. "Media environment, venture capital, and technological innovation: Evidence from China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1734-1747, September.
    26. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    27. Hansen, Bruce E, 2002. "Tests for Parameter Instability in Regressions with I(1) Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 45-59, January.
    28. Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
    29. Sinha, Avik & Sengupta, Tuhin & Alvarado, Rafael, 2020. "Interplay between Technological Innovation and Environmental Quality: Formulating the SDG Policies for Next 11 Economies," MPRA Paper 104247, University Library of Munich, Germany, revised 2020.
    30. Yi, Ming & Wang, Yiqian & Sheng, Mingyue & Sharp, Basil & Zhang, Yao, 2020. "Effects of heterogeneous technological progress on haze pollution: Evidence from China," Ecological Economics, Elsevier, vol. 169(C).
    31. Jianming Zhang & Gongqian Liang & Taiwen Feng & Chunlin Yuan & Wenbo Jiang, 2020. "Green innovation to respond to environmental regulation: How external knowledge adoption and green absorptive capacity matter?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(1), pages 39-53, January.
    32. Pu, Xiaohong & Zeng, Ming & Zhang, Weike, 2023. "Corporate sustainable development driven by high-quality innovation: Does fiscal decentralization really matter?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 273-289.
    33. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    34. Li Wang & Fei Xing & Yishan Yu & Yunhao Dai, 2021. "Does severe air pollution affect firm innovation: evidence from China," Applied Economics Letters, Taylor & Francis Journals, vol. 28(7), pages 551-558, April.
    35. Ahmer Bilal & Xiaoping Li & Nanli Zhu & Ridhima Sharma & Atif Jahanger, 2021. "Green Technology Innovation, Globalization, and CO 2 Emissions: Recent Insights from the OBOR Economies," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    36. Ning Ma & Puyu Liu & Yadong Xiao & Hengyun Tang & Jianqing Zhang, 2022. "Can Green Technological Innovation Reduce Hazardous Air Pollutants?—An Empirical Test Based on 283 Cities in China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    37. Ai, Hongshan & Wang, Mengyuan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2022. "How does air pollution affect urban innovation capability? Evidence from 281 cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 166-178.
    38. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    39. Chen, Fenglong & Wang, Meichang & Pu, Zhengning, 2022. "The impact of technological innovation on air pollution: Firm-level evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    40. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    41. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    42. Su, Chi-Wei & Qin, Meng & Tao, Ran & Shao, Xue-Feng & Albu, Lucian Liviu & Umar, Muhammad, 2020. "Can Bitcoin hedge the risks of geopolitical events?," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    43. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    44. Lai, Kee-hung & Wong, Christina W.Y., 2012. "Green logistics management and performance: Some empirical evidence from Chinese manufacturing exporters," Omega, Elsevier, vol. 40(3), pages 267-282.
    45. Liu, Yazhou & Ren, Tiantian & Liu, Lijun & Ni, Jinlan & Yin, Yingkai, 2023. "Heterogeneous industrial agglomeration, technological innovation and haze pollution," China Economic Review, Elsevier, vol. 77(C).
    46. Qin, Meng & Su, Chi-Wei & Umar, Muhammad & Lobonţ, Oana-Ramona & Manta, Alina Georgiana, 2023. "Are climate and geopolitics the challenges to sustainable development? Novel evidence from the global supply chain," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 748-763.
    47. Min Zhang & Seung‐hun Chung, 2020. "Is air pollution detrimental to regional innovation? Evidence from Chinese cities," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1657-1689, December.
    48. Wen-jun Wang & Yan-ni Liu & Xin-ru Ying, 2022. "Does Technological Innovation Curb O 3 Pollution? Evidence from Three Major Regions in China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    49. Mehmet Balcilar & Zeynel Ozdemir, 2013. "The export-output growth nexus in Japan: a bootstrap rolling window approach," Empirical Economics, Springer, vol. 44(2), pages 639-660, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Meng & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "Blockchain: A carbon-neutral facilitator or an environmental destroyer?," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 604-615.
    2. Sun, Yanpeng & Song, Yuru & Long, Chi & Qin, Meng & Lobonţ, Oana-Ramona, 2023. "How to improve global environmental governance? Lessons learned from climate risk and climate policy uncertainty," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1666-1676.
    3. Qin, Meng & Su, Yun Hsuan & Zhao, Zhengtang & Mirza, Nawazish, 2023. "The politics of climate: Does factionalism impede U.S. carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 954-966.
    4. Kong, Fanna & Gao, Zhuoqiong & Oprean-Stan, Camelia, 2023. "Green bond in China: An effective hedge against global supply chain pressure?," Energy Economics, Elsevier, vol. 128(C).
    5. Li, Zheng Zheng & Su, Chi-Wei & Moldovan, Nicoleta-Claudia & Umar, Muhammad, 2023. "Energy consumption within policy uncertainty: Considering the climate and economic factors," Renewable Energy, Elsevier, vol. 208(C), pages 567-576.
    6. Su, Chi-Wei & Wang, Dan & Mirza, Nawazish & Zhong, Yifan & Umar, Muhammad, 2023. "The impact of consumer confidence on oil prices," Energy Economics, Elsevier, vol. 124(C).
    7. Qin, Meng & Su, Chi-Wei & Pirtea, Marilen Gabriel & Dumitrescu Peculea, Adelina, 2023. "The essential role of Russian geopolitics: A fresh perception into the gold market," Resources Policy, Elsevier, vol. 81(C).
    8. Su, Chi Wei & Shao, Xuefeng & Jia, Zhijie & Nepal, Rabindra & Umar, Muhammad & Qin, Meng, 2023. "The rise of green energy metal: Could lithium threaten the status of oil?," Energy Economics, Elsevier, vol. 121(C).
    9. Su, Chi Wei & Liu, Fangying & Stefea, Petru & Umar, Muhammad, 2023. "Does technology innovation help to achieve carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1-14.
    10. Wang, Xinghua & Lee, Zhengzheng & Wu, Shuang & Qin, Meng, 2023. "Exploring the vital role of geopolitics in the oil market: The case of Russia," Resources Policy, Elsevier, vol. 85(PB).
    11. Liu, Fangying & Su, Chi Wei & Tao, Ran & Umar, Muhammad, 2023. "The instability of U.S. economic policy: A hindrance or a stimulus to green financing?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 33-46.
    12. Kai-Hua Wang & Jia-Min Kan & Cui-Feng Jiang & Chi-Wei Su, 2022. "Is Geopolitical Risk Powerful Enough to Affect Carbon Dioxide Emissions? Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    13. Yingying Xu & Zhi‐Xin Liu & Chi‐Wei Su & Jaime Ortiz, 2019. "Gold and inflation: Expected inflation effect or carrying cost effect?," International Finance, Wiley Blackwell, vol. 22(3), pages 380-398, December.
    14. Liu, Tie-Ying & Su, Chi-Wei, 2021. "Is transportation improving urbanization in China?," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    15. Qin, Meng & Su, Chi-Wei & Tao, Ran, 2021. "BitCoin: A new basket for eggs?," Economic Modelling, Elsevier, vol. 94(C), pages 896-907.
    16. Aye, Goodness C. & Balcilar, Mehmet & Bosch, Adél & Gupta, Rangan, 2014. "Housing and the business cycle in South Africa," Journal of Policy Modeling, Elsevier, vol. 36(3), pages 471-491.
    17. Ghosh, Taniya & Bhadury, Soumya, 2018. "Money's causal role in exchange rate: Do divisia monetary aggregates explain more?," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 402-417.
    18. Xiao-lin Li & Mehmet Balcilar & Rangan Gupta & Tsangyao Chang, 2016. "The Causal Relationship Between Economic Policy Uncertainty and Stock Returns in China and India: Evidence from a Bootstrap Rolling Window Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(3), pages 674-689, March.
    19. Kai-Hua Wang & Chi-Wei Su & Ran Tao, 2019. "Does the Mundell-Fleming model fit in China?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 11-28.
    20. Yingying Xu & Zhi-Xin Liu & Hsu-Ling Chang & Adelina Dumitrescu Peculea & Chi-Wei Su, 2017. "Does self-fulfilment of the inflation expectation exist?," Applied Economics, Taylor & Francis Journals, vol. 49(11), pages 1098-1113, March.

    More about this item

    Keywords

    Technological innovation; Air quality; Rolling-window; Bootstrap;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:80:y:2023:i:c:p:978-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.