IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i9p3516-3531.html
   My bibliography  Save this article

A neuro-computational intelligence analysis of the ecological footprint of nations

Author

Listed:
  • Mostafa, Mohamed M.
  • Nataraajan, Rajan

Abstract

The per capita ecological footprint (EF) is one of the most-widely recognized measures of environmental sustainability. It seeks to quantify the Earth's biological capacity required to support human activity. This study uses three neuro-computational methodologies: multi-layer perceptron neural network (MLP), probabilistic neural network (PNN) and generalized regression neural network (GRNN) to predict and classify the EF of 140 nations. Accuracy indices are used to assess the prediction and classification accuracy of the three methodologies. The study shows that neuro-computational models outperform traditional statistical techniques such as regression analysis and discriminant analysis in predicting and classifying per capita EF due to their robustness and flexibility of modeling algorithms.

Suggested Citation

  • Mostafa, Mohamed M. & Nataraajan, Rajan, 2009. "A neuro-computational intelligence analysis of the ecological footprint of nations," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3516-3531, July.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3516-3531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00099-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    2. Gorr, Wilpen L. & Nagin, Daniel & Szczypula, Janusz, 1994. "Comparative study of artificial neural network and statistical models for predicting student grade point averages," International Journal of Forecasting, Elsevier, vol. 10(1), pages 17-34, June.
    3. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    4. Shouhong Wang, 1995. "The Unpredictability of Standard Back Propagation Neural Networks in Classification Applications," Management Science, INFORMS, vol. 41(3), pages 555-559, March.
    5. Sam Mirmirani & H.C. Li, 2004. "Gold Price, Neural Networks and Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 23(2), pages 193-200, March.
    6. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    7. Bagliani, Marco & Bravo, Giangiacomo & Dalmazzone, Silvana, 2008. "A consumption-based approach to environmental Kuznets curves using the ecological footprint indicator," Ecological Economics, Elsevier, vol. 65(3), pages 650-661, April.
    8. J. Stuart McMenamin & Frank A. Monforte, 1998. "Short Term Energy Forecasting with Neural Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 43-61.
    9. Kuldeep Kumar & Sukanto Bhattacharya, 2006. "Artificial neural network vs linear discriminant analysis in credit ratings forecast: A comparative study of prediction performances," Review of Accounting and Finance, Emerald Group Publishing, vol. 5(3), pages 216-227, August.
    10. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 71-88, August.
    11. Moreno, David & Marco, Paulina & Olmeda, Ignacio, 2006. "Self-organizing maps could improve the classification of Spanish mutual funds," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1039-1054, October.
    12. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    13. Mohamed M. Mostafa, 2004. "Forecasting the Suez Canal traffic: a neural network analysis," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(2), pages 139-156, April.
    14. Karen Ehrhardt‐Martinez & Edward M. Crenshaw & J. Craig Jenkins, 2002. "Deforestation and the Environmental Kuznets Curve: A Cross‐National Investigation of Intervening Mechanisms," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 226-243, March.
    15. Shunsuke Managi, 2006. "Pollution, natural resource and economic growth: an econometric analysis," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(1), pages 73-88.
    16. R D Hurrion & S Birgil, 1999. "A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1018-1033, October.
    17. Hornborg, Alf, 1998. "Towards an ecological theory of unequal exchange: articulating world system theory and ecological economics," Ecological Economics, Elsevier, vol. 25(1), pages 127-136, April.
    18. World Bank, 2002. "World Development Indicators 2002," World Bank Publications - Books, The World Bank Group, number 13921, December.
    19. Grossman, Gene M. & Krueger, Alan B., 1996. "The inverted-U: what does it mean?," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 119-122, February.
    20. Andersson, Jan Otto & Lindroth, Mattias, 2001. "Ecologically unsustainable trade," Ecological Economics, Elsevier, vol. 37(1), pages 113-122, April.
    21. van Vuuren, D. P. & Smeets, E. M. W., 2000. "Ecological footprints of Benin, Bhutan, Costa Rica and the Netherlands," Ecological Economics, Elsevier, vol. 34(1), pages 115-130, July.
    22. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    23. McDonald, Garry W. & Patterson, Murray G., 2004. "Ecological Footprints and interdependencies of New Zealand regions," Ecological Economics, Elsevier, vol. 50(1-2), pages 49-67, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tausch, Arno, 2011. "Costa Rica, superstar? some reflections on the global drivers and bottlenecks of the happy planet index," MPRA Paper 33226, University Library of Munich, Germany.
    2. Tausch, Arno, 2016. "‘Smart development’. An essay on a new political economy of the environment," MPRA Paper 70204, University Library of Munich, Germany.
    3. Mohamed M. Mostafa, 2020. "Catastrophe Theory Predicts International Concern for Global Warming," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 709-731, September.
    4. Tausch, Arno, 2011. "The ‘four economic freedoms’ and life quality. General tendencies and some hard lessons for EU-27-Europe," MPRA Paper 33225, University Library of Munich, Germany.
    5. Arno Tausch & Almas Heshmati, 2012. "Migration, Openness and the Global Preconditions of "Smart Development"," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 26(2), pages 1-62.
    6. Tausch, Arno, 2011. "Globalization as a driver or bottleneck for sustainable development. General tendencies and European implications," MPRA Paper 33227, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    2. Ferng, Jiun-Jiun, 2014. "Nested open systems: An important concept for applying ecological footprint analysis to sustainable development assessment," Ecological Economics, Elsevier, vol. 106(C), pages 105-111.
    3. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    4. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    5. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    6. Mohamed M. Mostafa, 2020. "Catastrophe Theory Predicts International Concern for Global Warming," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 709-731, September.
    7. Bimonte, Salvatore & Stabile, Arsenio, 2017. "Land consumption and income in Italy: a case of inverted EKC," Ecological Economics, Elsevier, vol. 131(C), pages 36-43.
    8. Bagliani, Marco & Bravo, Giangiacomo & Dalmazzone, Silvana, 2008. "A consumption-based approach to environmental Kuznets curves using the ecological footprint indicator," Ecological Economics, Elsevier, vol. 65(3), pages 650-661, April.
    9. Yue, Dongxia & Xu, Xiaofeng & Hui, Cang & Xiong, Youcai & Han, Xuemei & Ma, Jinhui, 2011. "Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability," Ecological Economics, Elsevier, vol. 70(5), pages 988-994, March.
    10. Sarat Chandra Nayak & Bijan Bihari Misra, 2019. "A chemical-reaction-optimization-based neuro-fuzzy hybrid network for stock closing price prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-34, December.
    11. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2013. "Citizens as consumers: Profiling e-government services’ users in Egypt via data mining techniques," International Journal of Information Management, Elsevier, vol. 33(4), pages 627-641.
    12. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    13. Teixidó-Figueras, J. & Duro, J.A., 2014. "Spatial Polarization of the Ecological Footprint Distribution," Ecological Economics, Elsevier, vol. 104(C), pages 93-106.
    14. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    15. Matthew Sanderson & R. Frey, 2015. "Structural impediments to sustainable groundwater management in the High Plains Aquifer of western Kansas," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(3), pages 401-417, September.
    16. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    17. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    18. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    19. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    20. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:9:p:3516-3531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.