IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v49y2005i2p349-360.html
   My bibliography  Save this article

Estimating confidence regions over bounded domains

Author

Listed:
  • Eklund, Bruno

Abstract

Estimating a density function over a bounded domain can be very complicated and resulting in an unsatisfactory or unrealistic density estimate. In many cases a one-to-one transformation can be applied to the considered data set, but there are also situations where such a unique transformation may not exist. This paper proposes a method to estimate confidence regions over bounded domains when a one-to-one transformation either does not exist or its existence is difficult to verify. By taking into account parameter restrictions of a underlying model, a nonlinear grid can be constructed, over which the density function can be estimated. The method is illustrated by applying it to the kurtosis/first-order autocorrelation of squared observations of the GARCH(1,1) model.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Eklund, Bruno, 2005. "Estimating confidence regions over bounded domains," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 349-360, April.
  • Handle: RePEc:eee:csdana:v:49:y:2005:i:2:p:349-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00152-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Teräsvirta, Timo, 1996. "Two Stylized Facts and the Garch (1,1) Model," SSE/EFI Working Paper Series in Economics and Finance 96, Stockholm School of Economics.
    2. Tim Bollerslev, 1988. "On The Correlation Structure For The Generalized Autoregressive Conditional Heteroskedastic Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 121-131, March.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    5. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz Ortega, Esther & Fresoli, Diego Eduardo & Pascual, Lorenzo, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
    3. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    4. Ane, Thierry, 2006. "An analysis of the flexibility of Asymmetric Power GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1293-1311, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
    2. Prono, Todd, 2011. "When A Factor Is Measured with Error: The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Factor Models," MPRA Paper 33593, University Library of Munich, Germany.
    3. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    5. Karanasos, Menelaos & Kim, Jinki, 2006. "A re-examination of the asymmetric power ARCH model," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 113-128, January.
    6. Stelios Arvanitis & Antonis Demos, 2004. "Time Dependence and Moments of a Family of Time‐Varying Parameter Garch in Mean Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 1-25, January.
    7. Carlos Velasco & Ignacio N. Lobato, 2004. "A simple and general test for white noise," Econometric Society 2004 Latin American Meetings 112, Econometric Society.
    8. Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
    9. Carnero, María Ángeles & Peña, Daniel & Ruiz Ortega, Esther, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Pérez, Ana & Ruiz Ortega, Esther & Mora Galán, Alberto, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Pérez, Ana & Ruiz Ortega, Esther, 2001. "Properties of the sample autocorrelations in autoregressive stochastic volatllity models," DES - Working Papers. Statistics and Econometrics. WS ws011208, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    13. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    14. Attiya Yasmeen Javid, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE Research Report 2000:3, Pakistan Institute of Development Economics.
    15. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    16. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    17. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    18. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    19. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
    20. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:49:y:2005:i:2:p:349-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.