IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v195y2024ics0167947324000422.html
   My bibliography  Save this article

Semiparametric accelerated failure time models under unspecified random effect distributions

Author

Listed:
  • Seo, Byungtae
  • Ha, Il Do

Abstract

Accelerated failure time (AFT) models with random effects, a useful alternative to frailty models, have been widely used for analyzing clustered (or correlated) time-to-event data. In the AFT model, the distribution of the unobserved random effect is conventionally assumed to be parametric, often modeled as a normal distribution. Although it has been known that a misspecfied random-effect distribution has little effect on regression parameter estimates, in some cases, the impact caused by such misspecification is not negligible. Particularly when our focus extends to quantities associated with random effects, the problem could become worse. In this paper, we propose a semi-parametric maximum likelihood approach in which the random-effect distribution under the AFT models is left unspecified. We provide a feasible algorithm to estimate the random-effect distribution as well as model parameters. Through comprehensive simulation studies, our results demonstrate the effectiveness of this proposed method across a range of random-effect distribution types (discrete or continuous) and under conditions of heavy censoring. The efficacy of the approach is further illustrated through simulation studies and real-world data examples.

Suggested Citation

  • Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:csdana:v:195:y:2024:i:c:s0167947324000422
    DOI: 10.1016/j.csda.2024.107958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000422
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:195:y:2024:i:c:s0167947324000422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.