IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003850.html
   My bibliography  Save this article

Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications

Author

Listed:
  • Tu, Chengyi
  • Fan, Ying
  • Shi, Tianyu

Abstract

Complex dynamical systems are prevalent in various domains, but their analysis and prediction are hindered by their high dimensionality and nonlinearity. Dimensionality reduction techniques can simplify the system dynamics by reducing the number of variables, but most existing methods do not account for networked systems with separable coupling-dynamics, where the interaction between nodes can be decomposed into a function of the node state and a function of the neighbor state. Here, we propose a novel dimensional reduction framework for networked systems where the coupling-dynamics between nodes are separable. We derive the reduced system's equation and stability conditions, and propose an error metric to quantify the reduction accuracy. We demonstrate our framework on two examples of networked systems with separable coupling-dynamics: a modified susceptible-infected-susceptible model with non-direct infection and a modified Michaelis-Menten model with activation and inhibition. We conduct numerical experiments on synthetic and empirical networks to validate and evaluate our framework, and find a good agreement between the original and reduced systems. We also investigate the effects of different network structures and parameters on the system dynamics and the reduction error. Our framework offers a general and powerful tool for studying complex dynamical networks with separable coupling-dynamics.

Suggested Citation

  • Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003850
    DOI: 10.1016/j.chaos.2024.114833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.