IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003795.html
   My bibliography  Save this article

Study of magnetic fields using dynamical patterns and sensitivity analysis

Author

Listed:
  • Jhangeer, Adil
  • Beenish,

Abstract

The exploration of the nonlinear dynamics related to the new coupled Konno–Oono equation, which determines the propagation of magnetic fields, is the focus of this work. Through the employing of Lie group analysis, the bifurcation phase portraits, and chaos theory, the project will investigate symmetry reductions in dynamical systems and examine the dynamic behavior of perturbed dynamical systems. The 3D phase portrait, 2D phase portrait, Lyapunov exponent, time series analysis, sensitivity analysis, and an examination of the existence of multistability in the autonomous system under various initial conditions constitute a few of the methods used for recognizing chaotic behavior. Furthermore, the investigation constructs general solutions for solitary wave solutions, such as exponential and hyperbolic function, singular, dark, and bright soliton solutions, by using the new Kudryashov methodology to determine the investigated equation analytically. These solutions are shown graphically as 2D, 3D, and contour plots with specifically selected values. They include as well with the related constraint circumstances. Additionally, a discussion and a visual illustration of the considered equation’s sensitivity analysis are presented. The observations demonstrate that the aforementioned approach is an effective procedure for treating a variety of nonlinear PDE systems that arise in nonlinear physics analytically. The plot of the Lyapunov exponents is employed to validate the chaotic dynamics of the studied model. Additionally, the multiplier method is employed to determine the conserved vectors for the analyzed problem.

Suggested Citation

  • Jhangeer, Adil & Beenish,, 2024. "Study of magnetic fields using dynamical patterns and sensitivity analysis," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003795
    DOI: 10.1016/j.chaos.2024.114827
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.