IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003618.html
   My bibliography  Save this article

Dynamically selected steady states and criticality in non-reciprocal networks

Author

Listed:
  • Martorell, Carles
  • Calvo, Rubén
  • Annibale, Alessia
  • Muñoz, Miguel A.

Abstract

We consider a simple neural network model, evolving via non-linear coupled stochastic differential equations, where neural couplings are random Gaussian variables with non-zero mean and arbitrary degree of reciprocity. Using a path-integral approach, we analyse the dynamics, averaged over the network ensemble, in the thermodynamic limit. Our results show that for any degree of reciprocity in the couplings, two types of criticality emerge, corresponding to ferromagnetic and spin-glass order, respectively. The critical lines separating the disordered from the ordered phases is consistent with spectral properties of the coupling matrix, as derived from random matrix theory. As the non-reciprocity (or asymmetry) in the couplings increases, both ordered phases diminish in size, ultimately resulting in the disappearance of the spin-glass phase when the couplings become anti-symmetric. We investigate non-fixed point steady-state solutions for uncorrelated interactions. For such solutions the time-lagged correlation function evolves according to a gradient-descent dynamics on a potential, which depends on the stationary variance. Our analysis shows that in the spin-glass region, the variance dynamically selected by the system leads the correlation function to evolve on the separatrix curve, limiting different realizable steady states, whereas in the ferromagnetic region, a fixed point solution is selected as the only realizable steady state. In the spin-glass region, stationary solutions are unstable against perturbations that break time-translation invariance, indicating chaotic behaviour in large single network instances. Numerical analysis of Lyapunov exponents confirms that chaotic behaviour emerges throughout the spin-glass region, for any value of the coupling correlations. While negative correlations increase the strength of chaos, positive ones reduce it, with chaos disappearing for reciprocal (i.e. symmetric) couplings, where marginal stability is attained. On the other hand, in finite size non-reciprocal networks, fixed points and limit cycles can arise in the spin-glass region, especially close to the critical line. Finally, we show that chaos is suppressed when the strength of external noise exceeds a certain threshold. Intriguing analogies between chaotic phases in non-equilibrium systems and spin-glass phases in equilibrium are put forward.

Suggested Citation

  • Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003618
    DOI: 10.1016/j.chaos.2024.114809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.