IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003606.html
   My bibliography  Save this article

Mixed localized matter wave solitons in Bose–Einstein condensates with time-varying interatomic interaction and a time-varying complex harmonic trapping potential

Author

Listed:
  • Kengne, Emmanuel
  • Liu, WuMing

Abstract

We study the generation of mixed localized matter wave solitons in the quasi-one-dimensional Gross–Pitaevskii equation with a complex potential (model equation) that describes the dynamics of Bose–Einstein condensates trapped in an harmonic potential when the loss/gain of condensate atoms is taken into account. Performing a modified lens-type transformation, the integrability condition is derived and the model equation is converted to a Kundu-like nonlinear Schrödinger equation. Through the linear stability analysis, the phenomenon of the modulational instability is analyzed and the criterion of the modulational instability is established. Based on the generalized perturbation (n,N−n)−fold Darboux transformation, new mixed localized wave solutions are presented and used for analyzing the generation of mixed matter-wave solitons in Bose–Einstein condensates with two-body interatomic interactions. We show that mixed localized waves generated with these exact solutions can change from a strong interaction to a weak interaction by choosing the parameters such as the similarity parameters, the spectrum parameter, or the seed solution parameter. Our results show that the spectrum parameter is useful for generating interesting structures which are beneficial to understanding the complex physical phenomena in Bose–Einstein condensates with atomic gain/loss.

Suggested Citation

  • Kengne, Emmanuel & Liu, WuMing, 2024. "Mixed localized matter wave solitons in Bose–Einstein condensates with time-varying interatomic interaction and a time-varying complex harmonic trapping potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003606
    DOI: 10.1016/j.chaos.2024.114808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.