IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003540.html
   My bibliography  Save this article

Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit

Author

Listed:
  • Huang, Guodong
  • Zhou, Shu
  • Zhu, Rui
  • Wang, Yunhai
  • Chai, Yuan

Abstract

Chaotic systems have potential applications in secure communication and image encryption. The FitzHugh-Nagumo (FHN) neuron circuit model, as one of the most important models for neuron modelling, has a good chaotic discharge mode. On this basis, a controllable FHN piezoelectric neuron circuit is designed in this paper. By adjusting the state of the switch on or off, the circuit model can produce three different operating modes. The results show that the dynamic state of the system is determined by external stimuli, internal parameters of the system, and the number and nature of the external driving sources. More drivers can provide more chaos parameters. By converting different working modes, we can generate chaotic sequences with high randomness under different parameters. We found that when multiple drivers work together, the system output is more complex, and there is competition between dynamics induced by different drivers in the system. The addition of chaotic current makes the output discharge of the system produce chaotic resonance and pseudo-chaotic mode, which greatly improves the complexity of the sequence. This provides a new method for generating chaotic sequences with high randomness. Our work lays a theoretical foundation for the optimization of chaotic encryption algorithms in the future. In the future, we will further explore the effects of chaotic current stimulation with different properties. We hope that these findings will provide new insights into the security of information communications.

Suggested Citation

  • Huang, Guodong & Zhou, Shu & Zhu, Rui & Wang, Yunhai & Chai, Yuan, 2024. "Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003540
    DOI: 10.1016/j.chaos.2024.114802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.