IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003448.html
   My bibliography  Save this article

Biphasic action potentials in an individual cellular neural network cell

Author

Listed:
  • Wu, Huagan
  • Gu, Jinxiang
  • Guo, Yixuan
  • Chen, Mo
  • Xu, Quan

Abstract

Hardware circuit that can effectively simulate biological neurons is an important basis for neuromorphic computation. Cellular neural network (CNN) cell is the basic information processor of a CNN, which acts like a neuron in the brain and has good circuit realizability. An individual memristive CNN cell is constructed by using a memristor instead of a linear resistor for imitating the ion channel time-varying conductance, in which abundant biphasic chaotic and periodic spiking activities are uncovered. This provides a new way to simulate biological neurons at the level of analog circuits. This paper first deduces the mathematical model of the memristive CNN cell, analyzes the equilibrium stability and then explores its dynamical behaviors based on numerical simulation. The results display that the different spiking activities can be effectively regulated by the system parameters and excitation parameters. Furthermore, the analog circuit of the memristive CNN cell is designed and the PSpice-based circuit simulations are performed to verify the correctness of the numerical simulations.

Suggested Citation

  • Wu, Huagan & Gu, Jinxiang & Guo, Yixuan & Chen, Mo & Xu, Quan, 2024. "Biphasic action potentials in an individual cellular neural network cell," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448
    DOI: 10.1016/j.chaos.2024.114792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.