IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003394.html
   My bibliography  Save this article

A heteroscedastic Bayesian generalized logistic regression model with application to scaling problems

Author

Listed:
  • Sutton, Jack
  • Shahtahmassebi, Golnaz
  • Hanley, Quentin S.
  • Ribeiro, Haroldo V.

Abstract

Power law scaling models have been used to understand the complexity of systems as diverse as cities, neurological activity, and rainfall and lightning. In the scaling framework, power laws and standard linear regression methods are widely used to estimate model parameters with assumed normality and fixed variance. Generalized linear models (GLM) can accommodate a wider range of distributions where the chosen distribution must meet the assumptions of the data to prevent model bias. We present a widely applicable Bayesian generalized logistic regression (BGLR) framework to more flexibly model a continuous real response addressing skew and heteroscedasticity. The Generalized Logistic Distribution (GLD) was selected to flexibly model skewed continuous data. This resulted in a nonlinear posterior distribution which may not have an analytical solution which can be solved numerically with Markov Chain Monte Carlo (MCMC) methods. We compared the BGLR model to standard and Bayesian normal models having fixed and varying variance when fitting power laws to 759 days of COVID-19 data. The BGLR yielded information beyond existing methods about the evolution of skew and skedasticity while revealing parameter bias of widely used methods. The BGLR flexibly modelled the complex characteristics necessary for an improved understanding of the propagation and dynamics of this infectious disease. The model is generally applicable and can be used as a template for modelling complexity with other distributions.

Suggested Citation

  • Sutton, Jack & Shahtahmassebi, Golnaz & Hanley, Quentin S. & Ribeiro, Haroldo V., 2024. "A heteroscedastic Bayesian generalized logistic regression model with application to scaling problems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003394
    DOI: 10.1016/j.chaos.2024.114787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.