IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924002510.html
   My bibliography  Save this article

The synergy of elimination and zero-determinant strategy on dynamic games

Author

Listed:
  • Wang, Junfang
  • Shen, Aizhong

Abstract

Groups often fall into the trap of mutual betrayal because of the free-riding behavior of individuals. To promote cooperation level of the group, a dynamic game mechanism with elimination is proposed in this paper. Then, we study the individual and synergistic effects of the elimination mechanism and zero-determinant strategy on the game evolution. To reduce the number of eliminated players, we analyze the main influencing factors of node's survival rate. It is found that the dynamic game mechanism can change the dilemma of mutual betrayal, however many players will be eliminated. The synergy of zero-determinant strategy and elimination can not only keep a high cooperation level, but also enable more individuals to survive in the games. Moreover, the survival rate of a node is directly related to its degree and its initial strategy. And the results are robust to game model and rule of elimination. This provides a feasible game mechanism for improving the cooperation level of the group and provides the optimal strategy implementation scheme for the individuals to realize the maximization of benefits.

Suggested Citation

  • Wang, Junfang & Shen, Aizhong, 2024. "The synergy of elimination and zero-determinant strategy on dynamic games," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924002510
    DOI: 10.1016/j.chaos.2024.114699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924002510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.