IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000194.html
   My bibliography  Save this article

Multifractal characteristics of the low latitude equatorial ionospheric E–F valley region irregularities

Author

Listed:
  • Neelakshi, J.
  • Rosa, Reinaldo R.
  • Savio, Siomel
  • Stephany, Stephan
  • de Meneses, Francisco C.
  • Kherani, Esfhan Alam
  • Muralikrishna, P.

Abstract

Ionospheric irregularities of the E–F valley region are relatively less explored with in situ experiments enabling to capture local fine structures. Here, we present the multifractal analysis of electron density fluctuations in the E–F valley region, obtained from a rocket experiment performed at equatorial low latitude station, Alcântara, Brazil to explore scaling structures in the plasma irregularities. The multifractal spectrum is validated with a analytical model that mimics the energy distribution in a turbulent cascade using probabilistic weights. We report the nature of the E–F valley region irregularities to be multifractal, asymmetric, intermittent and non–homogeneous. The multifractal measures show transition of the influence from smaller to larger fluctuations as the rocket approaches the F layer base, consolidating earlier observations. By identifying the nature of the irregularities, we explore the possible cause for a wide variation reported in the spectral indices. Our analysis demonstrates the usability of the multifractal approach in studying the nonlinear fluctuations observed from the E-F valley region in situ data.

Suggested Citation

  • Neelakshi, J. & Rosa, Reinaldo R. & Savio, Siomel & Stephany, Stephan & de Meneses, Francisco C. & Kherani, Esfhan Alam & Muralikrishna, P., 2022. "Multifractal characteristics of the low latitude equatorial ionospheric E–F valley region irregularities," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000194
    DOI: 10.1016/j.chaos.2022.111808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    2. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    3. Hadrien Salat & Roberto Murcio & Keiji Yano & Elsa Arcaute, 2018. "Uncovering inequality through multifractality of land prices: 1912 and contemporary Kyoto," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-19, April.
    4. Hartmann, András & Mukli, Péter & Nagy, Zoltán & Kocsis, László & Hermán, Péter & Eke, András, 2013. "Real-time fractal signal processing in the time domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 89-102.
    5. Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos & Rodriguez, Eduardo & Dagdug, Leonardo, 2008. "1/f-Noise structures in Pollocks's drip paintings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 281-295.
    6. Grech, Dariusz, 2016. "Alternative measure of multifractal content and its application in finance," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 183-195.
    7. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    8. Jianbo Gao & Jing Hu & Wen-wen Tung, 2011. "Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    9. Xinmiao Lu & Hong Zhao & Haijun Lin & Qiong Wu, 2016. "Multifractal Analysis for Soft Fault Feature Extraction of Nonlinear Analog Circuits," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-7, May.
    10. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    11. Emrah Oral & Gazanfer Unal, 2019. "Modeling and forecasting time series of precious metals: a new approach to multifractal data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    12. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    2. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    3. Bastien Berthelot & Eric Grivel & Pierrick Legrand & Audrey Giremus, 2021. "Definition of the fluctuation function in the detrended fluctuation analysis and its variants," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-20, November.
    4. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    5. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    7. Bariviera, Aurelio F. & Fabregat-Aibar, Laura & Sorrosal-Forradellas, Maria-Teresa, 2023. "Disentangling the impact of economic and health crises on financial markets," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    10. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    11. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    12. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
    13. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    14. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    15. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    16. Mensi, Walid & Lee, Yun-Jung & Vinh Vo, Xuan & Yoon, Seong-Min, 2021. "Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    17. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    18. Santos, Fábio Sandro dos & Nascimento, Kerolly Kedma Felix do & Jale, Jader da Silva & Stosic, Tatijana & Marinho, Manoel H.N. & Ferreira, Tiago A.E., 2021. "Mixture distribution and multifractal analysis applied to wind speed in the Brazilian Northeast region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    19. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    20. Wang, Hong-Yong & Wang, Tong-Tong, 2018. "Multifractal analysis of the Chinese stock, bond and fund markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 280-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.