IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics030626192400504x.html
   My bibliography  Save this article

Modeling and control strategy optimizing of solar flux distribution in a four quadrant and adjustable focusing solar furnace

Author

Listed:
  • Yu, Qiang
  • Li, Zihao
  • Zhao, Wenyao
  • Zhang, Gaocheng
  • Xiong, Xinyu
  • Wu, Zhiyong

Abstract

The solar furnace is key equipment for the thermochemical reaction research which uses focused solar energy to drive the reactor, and the solar flux distribution on the reactor surface plays a decisive role in the regulation of the thermochemical reaction process and formation of target products. In this paper, a reflective solar furnace with a thermal power of 30 kWth in Yanqing, Beijing, is taken as the research objective. Firstly, the Monte Carlo Ray Tracing (MCRT) method is used to establish the mathematical model for the optical calculation, and the distribution characteristics of solar flux are deeply analyzed. The accuracy of the model is verified through the comparison with the SolTrace software and experimental measurements respectively. Secondly, an improved four-quadrant and adjustable focusing solar furnace experimental equipment is developed, and a new solar flux distribution regulation strategy is proposed by using the inward crossover and outward expansion offset of the four-quadrant focusing points coupled with the heat-absorbing platform movement. The results show that the non-uniform factor and the peak value of the solar flux distribution in the set target area can be optimized by selecting an appropriate inward crossover offset and movement of the heat-absorbing platform, respectively. Moreover, when the DNI varies between 480 W/m2 and 800 W/m2, through the optimized control strategy, a non-uniformity factor with the value of less than 0.10 can be achieved in the target area of a square reactor surface with a side length of 10 cm, and the peak flux can also be controlled in the range from 3000 kW/m2 to 3300 kW/m2 with a fluctuation range of less than 10.0% as set by the thermochemical reaction. The optimized control strategy can effectively meet the uniformity and stability requirements of solar flux distribution in solar thermochemical reaction and finally achieve the goal of regulating the target products.

Suggested Citation

  • Yu, Qiang & Li, Zihao & Zhao, Wenyao & Zhang, Gaocheng & Xiong, Xinyu & Wu, Zhiyong, 2024. "Modeling and control strategy optimizing of solar flux distribution in a four quadrant and adjustable focusing solar furnace," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400504x
    DOI: 10.1016/j.apenergy.2024.123121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400504X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400504x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.