IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004331.html
   My bibliography  Save this article

Experimental study on a two-stage absorption thermal battery with absorption-enhanced generation for high storage density and extremely low charging temperature (∼50 °C)

Author

Listed:
  • Ding, Zhixiong
  • Sui, Yunren
  • Lin, Haosheng
  • Luo, Xianglong
  • Wang, Huasheng
  • Chen, Ying
  • Liang, Yingzong
  • Wu, Wei

Abstract

Absorption thermal battery (ATB) is a promising solution to balance the timing or intensity mismatch between low-grade renewable energy sources and end users, which can significantly alleviate the growing energy and environmental issues. However, the performance of the basic ATB needs to be improved, and there is still a lack of experimental research on advanced ATBs. This study proposes a two-stage ATB with absorption-enhanced generation to achieve high energy storage density (ESD) and extremely low charging temperature. A prototype is designed and manufactured, including the single-stage and two-stage modes. The experimental results indicate that the single-stage ATB is fully charged under a charging temperature of 90 °C with an energy storage efficiency (ESE) of 0.62 and an ESD of 137.3 kWh/m3 (357.2 kJ/kg). Under a charging temperature of 70 °C, the ESD of the single-stage ATB is only 62.7 kWh/m3 (163.1 kJ/kg), which can be greatly enhanced to 100.0 kWh/m3 (260.1 kJ/kg) by the two-stage ATB. The lowest charging temperature of the single-stage ATB is 60 °C, with an ESE of 0.31 and an ESD of 22.1 kWh/m3, while the two-stage ATB improves the ESE and ESD by 9.7% and 190.5%, respectively. Even under 50 °C, the ESE (0.33) and ESD (29.4 kWh/m3) of the two-stage ATB are higher than those of the single-stage ATB under 60 °C. The experiment results prove that the two-stage ATB has the advantages of higher ESD and lower charging temperature than the conventional ATB, which provides a promising option for low-grade renewable energy utilization.

Suggested Citation

  • Ding, Zhixiong & Sui, Yunren & Lin, Haosheng & Luo, Xianglong & Wang, Huasheng & Chen, Ying & Liang, Yingzong & Wu, Wei, 2024. "Experimental study on a two-stage absorption thermal battery with absorption-enhanced generation for high storage density and extremely low charging temperature (∼50 °C)," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004331
    DOI: 10.1016/j.apenergy.2024.123050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.