IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp1629-1639.html
   My bibliography  Save this article

Estimating battery lifetimes in Solar Home System design using a practical modelling methodology

Author

Listed:
  • Narayan, Nishant
  • Papakosta, Thekla
  • Vega-Garita, Victor
  • Qin, Zian
  • Popovic-Gerber, Jelena
  • Bauer, Pavol
  • Zeman, Miroslav

Abstract

The rapid increase in the adoption of Solar Home Systems (SHS) in recent times hopes to ameliorate the global problem of energy poverty. The battery is a vital but usually the most expensive part of an SHS; owing to the least lifetime among other SHS components, it is also the first to fail. Estimating battery lifetime is a critical task for SHS design. However, it is also a complex task due to the reliance on experimental data or modelling cell level electrochemical phenomena for specific battery technologies and application use-case. Another challenge is that the existing electrochemical models are not application-specific to Solar Home Systems. This paper presents a practical, non-empirical battery lifetime estimation methodology specific to the application and the available candidate battery choices. An application-specific SHS simulation is carried out, and the battery activity is analyzed. A practical dynamic battery lifetime estimation method is introduced, which captures the fading capacity of the battery dynamically through every micro-cycle. This method was compared with an overall non-empirical battery lifetime estimation method, and the dynamic lifetime estimation method was found to be more conservative but practical. Cyclic ageing of the battery was thus quantified and the relative lifetimes of 4 battery technologies are compared, viz. Lead-acid gel, Flooded lead-acid, Nickel-Cadmium (NiCd), and Lithium Iron Phosphate (LiFePO4) battery. For the same SHS use-case, State-of-Health (SOH) estimations from an empirical model for LiFePO4 is compared with those obtained from the described methodology, and the results are found to be within 2.8%. The relevance of this work in an SHS application is demonstrated through a delicate balance between battery sizing and lifetime. Based on the intended application and battery manufacturer’s data, the practical methodology described in this paper can potentially help SHS designers in estimating battery lifetimes and therefore making optimal SHS design choices.

Suggested Citation

  • Narayan, Nishant & Papakosta, Thekla & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2018. "Estimating battery lifetimes in Solar Home System design using a practical modelling methodology," Applied Energy, Elsevier, vol. 228(C), pages 1629-1639.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1629-1639
    DOI: 10.1016/j.apenergy.2018.06.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    2. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2016. "Rural electricity access in South Asia: Is grid extension the remedy? A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1505-1515.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    5. Mikul Bhatia & Nicolina Angelou, 2014. "Capturing the Multi-Dimensionality of Energy Access," World Bank Publications - Reports 18677, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    2. Ridha, Hussein Mohammed & Gomes, Chandima & Hazim, Hashim & Ahmadipour, Masoud, 2020. "Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis," Energy, Elsevier, vol. 207(C).
    3. Sun, Qixing & Xing, Dong & Alafnan, Hamoud & Pei, Xiaoze & Zhang, Min & Yuan, Weijia, 2019. "Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    5. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    7. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    8. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    9. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    10. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    11. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    12. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    13. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Jonathan Fahlbeck & Håkan Nilsson & Saeed Salehi, 2021. "Flow Characteristics of Preliminary Shutdown and Startup Sequences for a Model Counter-Rotating Pump-Turbine," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    16. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    17. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    18. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    19. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    20. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:1629-1639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.