IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v209y2018icp251-265.html
   My bibliography  Save this article

Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows

Author

Listed:
  • Zhang, Qi
  • Xu, Jin
  • Wang, Yujie
  • Hasanbeigi, Ali
  • Zhang, Wei
  • Lu, Hongyou
  • Arens, Marlene

Abstract

To investigate the potential of energy saving and emissions mitigation during 2015–2050 in China’s iron and steel industry (CISI), a comprehensive assessment approach was developed and applied on the basis of the dynamic Material Flow Analysis (MFA) model and the energy consumption and carbon dioxide (CO2) emission model. Four scenarios including the business-as-usual (BAU) scenario, the structure adjustment (STA) scenario, the energy-efficiency improvement (EEI) scenario, and the strengthened policy (STP) scenario have been set to describe future energy saving and carbon mitigation strategies in relation to the development of the iron and steel industry. The modeling results show that China’s steel demand will gradually decrease from 789.35 Mt in 2013 to 440.38 Mt in 2043 and will stabilize at around 450 Mt, and the scrap resources are sufficient to support the promotion of the production structure under all four scenarios. The results also indicate that energy consumption and CO2 emissions will gradually decline under the synergistic effect of technology promotion and structure adjustment during the period. In the short term, they will depend more on technology improvement; in the long term, particularly after 2040, promotion of the production structure adjustment will be the main force. The selected 35 energy saving technologies (ESTs) contribute to 3.01 GJ/t and 398.22 kg CO2/t crude steel when the discount rate of 15% is applied.

Suggested Citation

  • Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
  • Handle: RePEc:eee:appene:v:209:y:2018:i:c:p:251-265
    DOI: 10.1016/j.apenergy.2017.10.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731512X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leon Berkelmans & Hao Wang, 2012. "Chinese Urban Residential Construction to 2040," RBA Research Discussion Papers rdp2012-04, Reserve Bank of Australia.
    2. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
    3. Siitonen, Sari & Tuomaala, Mari & Suominen, Markku & Ahtila, Pekka, 2010. "Implications of process energy efficiency improvements for primary energy consumption and CO2 emissions at the national level," Applied Energy, Elsevier, vol. 87(9), pages 2928-2937, September.
    4. Tian Wu & Hongmei Zhao & Xunmin Ou, 2014. "Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050," Sustainability, MDPI, vol. 6(8), pages 1-23, August.
    5. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    6. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    7. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    8. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    9. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    10. Tao Wang & Daniel B. Müller & Seiji Hashimoto, 2015. "The Ferrous Find: Counting Iron and Steel Stocks in China's Economy," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 877-889, October.
    11. Tanaka, Kanako, 2008. "Assessment of energy efficiency performance measures in industry and their application for policy," Energy Policy, Elsevier, vol. 36(8), pages 2877-2892, August.
    12. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    13. Arens, Marlene & Worrell, Ernst & Schleich, Joachim, 2012. "Energy intensity development of the German iron and steel industry between 1991 and 2007," Energy, Elsevier, vol. 45(1), pages 786-797.
    14. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    15. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    16. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    17. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    18. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    19. Leon Berkelmans & Hao Wang, 2012. "Chinese Urban Residential Construction," RBA Bulletin (Print copy discontinued), Reserve Bank of Australia, pages 21-26, September.
    20. Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
    21. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    22. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    2. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    5. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    6. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    7. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    8. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
    9. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    10. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    11. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    12. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    13. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    14. Xuan Yanni & Yue Qiang, 2016. "Retrospective and Prospective Analysis on the Trends of China’s Steel Production," Journal of Systems Science and Information, De Gruyter, vol. 4(4), pages 291-306, August.
    15. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    16. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    17. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    18. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    19. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:209:y:2018:i:c:p:251-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.