IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp330-341.html
   My bibliography  Save this article

Green operations of belt conveyors by means of speed control

Author

Listed:
  • He, Daijie
  • Pang, Yusong
  • Lodewijks, Gabriel

Abstract

Belt conveyors can be partially loaded due to the variation of bulk material flow loaded onto the conveyor. Speed control attempts to reduce the belt conveyor energy consumption and to enable the green operations of belt conveyors. Current research of speed control rarely takes the conveyor dynamics into account so that speed control lacks applicability. Based on our previous research, this paper will provide an improved three-step method to determine the minimum speed adjustment time. This method can be summarized as Estimation-Calculation-Optimization and ECO in short. The ECO method takes both the potential risks and the conveyor dynamics into account. It is expected to keep belt conveyors in good dynamic behaviors in transient operations. After discussing the ECO method, this research takes a long inclined belt conveyor of an import dry bulk terminal as case study. Based on the suggested acceleration time, a speed controller is built and computational simulations are carried out to evaluate the energy savings and the conveyor dynamics. Experimental results prove that the application of the ECO method ensures the healthy dynamic performance of belt conveyors under speed control in transient operations. Annually, the average electricity consumption of the single conveyor can be reduced by over 10% with around 90tons reduction of CO2 emission. The direct economic benefit can reach up to more than €10,000 in terms of the electricity utilization per year.

Suggested Citation

  • He, Daijie & Pang, Yusong & Lodewijks, Gabriel, 2017. "Green operations of belt conveyors by means of speed control," Applied Energy, Elsevier, vol. 188(C), pages 330-341.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:330-341
    DOI: 10.1016/j.apenergy.2016.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2013. "Developing a Social Cost of Carbon for US Regulatory Analysis: A Methodology and Interpretation," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 23-46, January.
    2. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    3. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    4. Zhang, Shirong & Xia, Xiaohua, 2011. "Modeling and energy efficiency optimization of belt conveyors," Applied Energy, Elsevier, vol. 88(9), pages 3061-3071.
    5. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Optimization of global and local pollution control in electricity production from coal burning," Applied Energy, Elsevier, vol. 92(C), pages 369-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    2. Jianhua Ji & Changyun Miao & Xianguo Li & Yi Liu, 2021. "Speed regulation strategy and algorithm for the variable-belt-speed energy-saving control of a belt conveyor based on the material flow rate," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
    3. Qixun Zhou & Hao Gong & Guanghui Du & Yingxing Zhang & Hucheng He, 2022. "Distributed Permanent Magnet Direct-Drive Belt Conveyor System and Its Control Strategy," Energies, MDPI, vol. 15(22), pages 1-18, November.
    4. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
    5. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    6. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.
    7. Yanping Yao & Bisheng Zhang, 2020. "Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    8. Witold Kawalec & Robert Król, 2021. "Generating of Electric Energy by a Declined Overburden Conveyor in a Continuous Surface Mine," Energies, MDPI, vol. 14(13), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    2. Pihnastyi, Oleh & Khodusov, Valery & Kotova, Anna, 2022. "The problem of combined optimal load flow control of main conveyor line," MPRA Paper 113787, University Library of Munich, Germany, revised 05 Jun 2022.
    3. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2021. "Influence of Design Parameters of Idler Bearing Units on the Energy Consumption of a Belt Conveyor," Sustainability, MDPI, vol. 13(1), pages 1-13, January.
    4. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2022. "Methods of Testing of Roller Rotational Resistance in Aspect of Energy Consumption of a Belt Conveyor," Energies, MDPI, vol. 16(1), pages 1-12, December.
    5. Chunyu Yang & Jinhao Liu & Heng Li & Linna Zhou, 2018. "Energy Modeling and Parameter Identification of Dual-Motor-Driven Belt Conveyors without Speed Sensors," Energies, MDPI, vol. 11(12), pages 1-17, November.
    6. Huanan Li & Quande Qin, 2017. "Optimal selection of different CCS technologies under CO2 reduction targets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1197-1209, September.
    7. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    8. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    9. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    10. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    11. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    12. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    13. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    14. Andor, Mark A. & Gerster, Andreas & Peters, Jörg & Schmidt, Christoph M., 2020. "Social Norms and Energy Conservation Beyond the US," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    15. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    16. Lucas W. Davis, 2017. "The Environmental Cost of Global Fuel Subsidies," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    17. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    18. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    19. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    20. Caplan, Arthur J. & Acharya, Ramjee, 2019. "Optimal vehicle use in the presence of episodic mobile-source air pollution," Resource and Energy Economics, Elsevier, vol. 57(C), pages 185-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:330-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.