IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v71y2003i5p1339-1375.html
   My bibliography  Save this article

Nonparametric Estimation of Nonadditive Random Functions

Author

Listed:
  • Rosa L. Matzkin

Abstract

We present estimators for nonparametric functions that are nonadditive in unobservable random terms. The distributions of the unobservable random terms are assumed to be unknown. We show that when a nonadditive, nonparametric function is strictly monotone in an unobservable random term, and it satisfies some other properties that may be implied by economic theory, such as homogeneity of degree one or separability, the function and the distribution of the unobservable random term are identified. We also present convenient normalizations, to use when the properties of the function, other than strict monotonicity in the unobservable random term, are unknown. The estimators for the nonparametric function and for the distribution of the unobservable random term are shown to be consistent and asymptotically normal. We extend the results to functions that depend on a multivariate random term. The results of a limited simulation study are presented. Copyright The Econometric Society 2003.

Suggested Citation

  • Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
  • Handle: RePEc:ecm:emetrp:v:71:y:2003:i:5:p:1339-1375
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    2. Benkard, C. Lanier & Bajari, Patrick, 2001. "Demand Estimation with Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Research Papers 1691, Stanford University, Graduate School of Business.
    3. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    4. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    5. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    6. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.
    7. Brown, Bryan W & Walker, Mary Beth, 1989. "The Random Utility Hypothesis and Inference in Demand Systems," Econometrica, Econometric Society, vol. 57(4), pages 815-829, July.
    8. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    9. Patrick Bajari & C. Lanier Benkard, 2001. "Demand Estimation With Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Working Papers 01010, Stanford University, Department of Economics.
    10. McElroy, Marjorie B, 1987. "Additive General Error Models for Production, Cost, and Derived Demand or Share Systems," Journal of Political Economy, University of Chicago Press, vol. 95(4), pages 737-757, August.
    11. Heckman, James J & Willis, Robert J, 1977. "A Beta-logistic Model for the Analysis of Sequential Labor Force Participation by Married Women," Journal of Political Economy, University of Chicago Press, vol. 85(1), pages 27-58, February.
    12. Bryan W. Brown & Mary Beth Walker, 1992. "Stochastic specification in random production models of cost minimizing firms," FRB Atlanta Working Paper 92-6, Federal Reserve Bank of Atlanta.
    13. Brown, Bryan W. & Walker, Mary Beth, 1995. "Stochastic specification in random production models of cost-minimizing firms," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 175-205.
    14. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    15. Geert Ridder, 1990. "The Non-Parametric Identification of Generalized Accelerated Failure-Time Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(2), pages 167-181.
    16. Roehrig, Charles S, 1988. "Conditions for Identification in Nonparametric and Parametic Models," Econometrica, Econometric Society, vol. 56(2), pages 433-447, March.
    17. Han, Aaron K., 1987. "A non-parametric analysis of transformations," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 191-209, July.
    18. J. Heckman & B. Singer, 1984. "The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(2), pages 231-241.
    19. Heckman, James J, 1991. "Identifying the Hand of the Past: Distinguishing State Dependence from Heterogeneity," American Economic Review, American Economic Association, vol. 81(2), pages 75-79, May.
    20. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 403-409.
    21. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa L. Matzkin & James Heckman & Lars Nesheim, 2002. "Nonparametric Estimation and Nonadditive Hedonic Models," Working Papers 51, Universidad de San Andres, Departamento de Economia, revised Jun 2002.
    2. Fève, Frédérique & Fève, Patrick & Florens, Jean-Pierre, 2002. "Attribute Choices and Structural Econometrics of Price Elasticity of Demand," IDEI Working Papers 155, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2003.
    3. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    4. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    5. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    6. John Mullahy, 2010. "Multivariate Fractional Regression Estimation of Econometric Share Models," NBER Working Papers 16354, National Bureau of Economic Research, Inc.
    7. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    8. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    9. Jerry Hausman & Tiemen Woutersen, 2014. "Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 472-496, August.
    10. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    11. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    12. Chiappori, Pierre-Andre & Komunjer, Ivana, 2008. "Correct Specification and Identification of Nonparametric Transformation Models," University of California at San Diego, Economics Working Paper Series qt4v12m2rg, Department of Economics, UC San Diego.
    13. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    14. Steven T. Berry & Philip A. Haile, 2011. "Identification in a Class of Nonparametric Simultaneous Equations Models," Cowles Foundation Discussion Papers 1787R2, Cowles Foundation for Research in Economics, Yale University, revised Nov 2013.
    15. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Blundell, Richard & Kristensen, Dennis & Matzkin, Rosa, 2014. "Bounding quantile demand functions using revealed preference inequalities," Journal of Econometrics, Elsevier, vol. 179(2), pages 112-127.
    17. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    18. Steven T. Berry & Philip A. Haile, 2018. "Identification of Nonparametric Simultaneous Equations Models With a Residual Index Structure," Econometrica, Econometric Society, vol. 86(1), pages 289-315, January.
    19. Brinch, Christian N., 2007. "Nonparametric Identification Of The Mixed Hazards Model With Time-Varying Covariates," Econometric Theory, Cambridge University Press, vol. 23(2), pages 349-354, April.
    20. Brinch,C., 2000. "Identification of structural duration dependence and unobserved heterogeneity with time-varying," Memorandum 20/2000, Oslo University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:5:p:1339-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.