IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v68y2015i24p67-73.html
   My bibliography  Save this article

Evaluation des Eurozone Economic Outlook

Author

Listed:
  • Korbinian Breitrainer
  • Atanas Hristov

Abstract

Das ifo Institut erstellt zusammen mit dem INSEE, Paris, und dem Istat, Rom vierteljährlich Prognosen für das reale Bruttoinlandsprodukt, die Inflation, den Konsum, die Investitionen und die Industrieproduktion im Euroraum, den Eurozone Economic Outlook (EZEO). Der Beitrag bewertet die Qualität der Prognosen des EZEO für das reale Bruttoinlandsprodukt und die Inflation. Prognosefehleranalysen zeigen, dass es keinen statistisch signifikanten Unterschied zwischen den Prognosen von EZEO und Consensus Economics gibt.

Suggested Citation

  • Korbinian Breitrainer & Atanas Hristov, 2015. "Evaluation des Eurozone Economic Outlook," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(24), pages 67-73, December.
  • Handle: RePEc:ces:ifosdt:v:68:y:2015:i:24:p:67-73
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/sd-2015-24-hristov-eurozone-economic-outlook-2015-12-21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timo Wollmershäuser, 2015. "Evaluation der ifo Konjunkturprognosen – ein Vergleich mit den Prognosen von Consensus Economics," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(22), pages 26-28, November.
    2. Steffen Henzel & Wolfgang Nierhaus & Timo Wollmershäuser, 2014. "Evaluation der ifo Konjunkturprognosen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 67(17), pages 43-45, September.
    3. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    4. Berg Tim Oliver, 2017. "Forecast accuracy of a BVAR under alternative specifications of the zero lower bound," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-29, April.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Fobbe & Robert Lehmann, 2016. "Elektromotoren, Energieversorgung und Erziehung: Die Güte der entstehungsseitigen ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(12), pages 58-63, June.
    2. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    5. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    6. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    7. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    8. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    9. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    10. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    11. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    12. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    13. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    14. repec:lan:wpaper:470 is not listed on IDEAS
    15. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    16. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    17. Anastasios Petropoulos & Vasilis Siakoulis & Dionysios Mylonas & Aristotelis Klamargias, 2018. "A combined statistical framework for forecasting default rates of Greek Financial Institutions' credit portfolios," Working Papers 243, Bank of Greece.
    18. Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    19. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    21. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.

    More about this item

    Keywords

    Prognose; Bewertung; Statistik;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:68:y:2015:i:24:p:67-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.