IDEAS home Printed from https://ideas.repec.org/a/cai/repdal/redp_273_0375.html
   My bibliography  Save this article

Scoring Rules and Preference Restrictions: The Strong Borda Paradox Revisited

Author

Listed:
  • Eric Kamwa
  • Fabrice Valognes

Abstract

For a given voting situation, the Strong Borda Paradox occurs when a Condorcet loser exists and is elected. A Condorcet loser is a candidate that loses all his pairwise comparisons. In three-candidate elections, we use an analytical approach to find out, the range of all the scoring rules that can exhibit the Strong Borda Paradox under some well-known preference restrictions and we describe all the scenarios with respect to the rank of the Condorcet loser in the collective rankings. Using the parameterized Barvinok?s algorithm, we provide a simplified representation of the likelihood of the Strong Borda Paradox for the Plurality rule and the Antiplurality rule (given the size of the electorate) with the impartial and anonymous culture condition for each type of restriction.

Suggested Citation

  • Eric Kamwa & Fabrice Valognes, 2017. "Scoring Rules and Preference Restrictions: The Strong Borda Paradox Revisited," Revue d'économie politique, Dalloz, vol. 127(3), pages 375-395.
  • Handle: RePEc:cai:repdal:redp_273_0375
    as

    Download full text from publisher

    File URL: http://www.cairn.info/load_pdf.php?ID_ARTICLE=REDP_273_0375
    Download Restriction: free

    File URL: http://www.cairn.info/revue-d-economie-politique-2017-3-page-375.htm
    Download Restriction: free
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. William Gehrlein & Dominique Lepelley, 2010. "On the probability of observing Borda’s paradox," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(1), pages 1-23, June.
    2. William V. Gehrlein, 2002. "Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 503-512.
    3. Dominique Lepelley & Ahmed Louichi & Hatem Smaoui, 2008. "On Ehrhart polynomials and probability calculations in voting theory," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(3), pages 363-383, April.
    4. Mostapha Diss & William Gehrlein, 2012. "Borda’s Paradox with weighted scoring rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 121-136, January.
    5. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.
    6. Saari, Donald G. & Valognes, Fabrice, 1999. "The geometry of Black's single peakedness and related conditions," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 429-456, December.
    7. Tataru, Maria & Merlin, Vincent, 1997. "On the relationship of the Condorcet winner and positional voting rules," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 81-90, August.
    8. Dominique Lepelley, 1996. "Constant scoring rules, Condorcet criteria and single-peaked preferences (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(3), pages 491-500.
    9. William Gehrlein, 2004. "Consistency in Measures of Social Homogeneity: A Connection with Proximity to Single Peaked Preferences," Quality & Quantity: International Journal of Methodology, Springer, vol. 38(2), pages 147-171, April.
    10. Donald G. Saari & Fabrice Valognes, 1999. "The geometry of Black's single peakedness and related conditions," Post-Print halshs-02173163, HAL.
    11. Lepelley, Dominique, 1993. "On the probability of electing the Condorcet," Mathematical Social Sciences, Elsevier, vol. 25(2), pages 105-116, February.
    12. Dominique Lepelley & Ahmed Louichi & Fabrice Valognes, 2000. "Computer simulations of voting systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 181-194.
    13. Alexander I. Barvinok, 1994. "A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the Dimension is Fixed," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 769-779, November.
    14. Gehrlein, William V. & Fishburn, Peter C., 1976. "The probability of the paradox of voting: A computable solution," Journal of Economic Theory, Elsevier, vol. 13(1), pages 14-25, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Kamwa, 2022. "Scoring rules, ballot truncation, and the truncation paradox," Public Choice, Springer, vol. 192(1), pages 79-97, July.
    2. Mostapha Diss & Abdelmonaim Tlidi, 2018. "Another perspective on Borda’s paradox," Theory and Decision, Springer, vol. 84(1), pages 99-121, January.
    3. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    4. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    5. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    6. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2018. "A Note on the Likelihood of the Absolute Majority Paradoxes," Economics Bulletin, AccessEcon, vol. 38(4), pages 1727-1734.
    7. Eric Kamwa, 2019. "Condorcet efficiency of the preference approval voting and the probability of selecting the Condorcet loser," Theory and Decision, Springer, vol. 87(3), pages 299-320, October.
    8. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2018. "The Chamberlin-Courant Rule and the k-Scoring Rules: Agreement and Condorcet Committee Consistency," Working Papers hal-01757761, HAL.
    9. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    10. Doi, Ryoga & Okamoto, Noriaki, 2024. "Condorcet-loser dominance between the plurality rule and other scoring rules," Economics Letters, Elsevier, vol. 237(C).
    11. Eric Kamwa, 2022. "Scoring Rules, Ballot Truncation, and the Truncation Paradox," Working Papers hal-03632662, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    2. Eric Kamwa, 2018. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Working Papers hal-01786590, HAL.
    3. Abdelhalim El Ouafdi & Dominique Lepelley & Hatem Smaoui, 2020. "Probabilities of electoral outcomes: from three-candidate to four-candidate elections," Theory and Decision, Springer, vol. 88(2), pages 205-229, March.
    4. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    5. Achill Schürmann, 2013. "Exploiting polyhedral symmetries in social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1097-1110, April.
    6. Eric Kamwa & Vincent Merlin & Faty Mbaye Top, 2023. "Scoring Run-off Rules, Single-peaked Preferences and Paradoxes of Variable Electorate," Working Papers hal-03143741, HAL.
    7. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    8. Diss, Mostapha & Mahajne, Muhammad, 2020. "Social acceptability of Condorcet committees," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 14-27.
    9. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2018. "The Chamberlin-Courant Rule and the k-Scoring Rules: Agreement and Condorcet Committee Consistency," Working Papers halshs-01817943, HAL.
    10. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    11. William Gehrlein & Dominique Lepelley, 2010. "On the probability of observing Borda’s paradox," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(1), pages 1-23, June.
    12. Moyouwou, Issofa & Tchantcho, Hugue, 2017. "Asymptotic vulnerability of positional voting rules to coalitional manipulation," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 70-82.
    13. Eric Kamwa, 2019. "Condorcet efficiency of the preference approval voting and the probability of selecting the Condorcet loser," Theory and Decision, Springer, vol. 87(3), pages 299-320, October.
    14. Le Breton, Michel & Lepelley, Dominique & Smaoui, Hatem, 2012. "The Probability of Casting a Decisive Vote: From IC to IAC trhough Ehrhart's Polynomials and Strong Mixing," IDEI Working Papers 722, Institut d'Économie Industrielle (IDEI), Toulouse.
    15. David McCune & Erin Martin & Grant Latina & Kaitlyn Simms, 2023. "A Comparison of Sequential Ranked-Choice Voting and Single Transferable Vote," Papers 2306.17341, arXiv.org.
    16. Gehrlein, William V. & Moyouwou, Issofa & Lepelley, Dominique, 2013. "The impact of voters’ preference diversity on the probability of some electoral outcomes," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 352-365.
    17. Sylvain Béal & Marc Deschamps & Mostapha Diss & Issofa Moyouwou, 2022. "Inconsistent weighting in weighted voting games," Public Choice, Springer, vol. 191(1), pages 75-103, April.
    18. Hatem Smaoui & Dominique Lepelley & Issofa Moyouwou, 2016. "Borda elimination rule and monotonicity paradoxes in three-candidate elections," Economics Bulletin, AccessEcon, vol. 36(3), pages 1722-1728.
    19. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    20. Eric Kamwa & Issofa Moyouwou, 2019. "Susceptibility to Manipulation by Sincere Truncation : the Case of Scoring Rules and Scoring Runoff Systems," Working Papers hal-02185965, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cai:repdal:redp_273_0375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-Baptiste de Vathaire (email available below). General contact details of provider: https://www.cairn.info/revue-d-economie-politique.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.