IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v28y2011i2p119-150n3.html
   My bibliography  Save this article

Non-parametric drift estimation for diffusions from noisy data

Author

Listed:
  • Schmisser Emeline

Abstract

Consider a diffusion process (Xt)t ≥ 0, with unknown drift b(x) and diffusion coefficient σ(x), which is strictly stationary, ergodic and β-mixing. At discrete times tk = kδ for k from 1 to N, we have at disposal noisy data of the sample path, Ykδ = Xkδ+εk. The random variables (εk) are i.i.d., centred and independent of (Xt). In order to reduce the noise effect, we split data into groups of equal size p and build empirical means. The group size p is chosen such that Δ = pδ is small whereas Nδ is large. Then, the drift function b is estimated in a compact set A in a non-parametric way using a penalized least squares approach. We obtain a bound for the risk of the resulting adaptive estimator. Examples of diffusions satisfying our assumptions are given and numerical simulation results illustrate the theoretical properties of our estimators.

Suggested Citation

  • Schmisser Emeline, 2011. "Non-parametric drift estimation for diffusions from noisy data," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 119-150, May.
  • Handle: RePEc:bpj:strimo:v:28:y:2011:i:2:p:119-150:n:3
    DOI: 10.1524/stnd.2011.1063
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2011.1063
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2011.1063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Comte & Y. Rozenholc, 2004. "A new algorithm for fixed design regression and denoising," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 449-473, September.
    2. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    3. Hoffmann, Marc, 1999. "Adaptive estimation in diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 135-163, January.
    4. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    5. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooyong Lee & Priscilla E. Greenwood & Nancy Heckman & Wolfgang Wefelmeyer, 2017. "Pre-averaged kernel estimators for the drift function of a diffusion process in the presence of microstructure noise," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 237-252, July.
    2. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    3. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    4. Emeline Schmisser, 2012. "Non-parametric estimation of the diffusion coefficient from noisy data," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 193-223, October.
    5. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    6. Virgil DAMIAN & Cosmin – Octavian CEPOI, 2016. "Volatility Estimators With High-Frequency Data From Bucharest Stock Exchange," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 247-264.
    7. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    8. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Oct 2018.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    10. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    11. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    12. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    13. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    14. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.
    15. Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    17. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    18. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    19. Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Cambridge Working Papers in Economics 2218, Faculty of Economics, University of Cambridge.
    20. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:28:y:2011:i:2:p:119-150:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.