IDEAS home Printed from https://ideas.repec.org/a/bpj/statpp/v8y2017i1p65-84n4.html
   My bibliography  Save this article

Roosevelt Predicted to Win: Revisiting the 1936 Literary Digest Poll

Author

Listed:
  • Lohr Sharon L.

    (Westat, 1600 Research Boulevard, Rockville, MD 20850, USA)

  • Brick J. Michael

    (Westat, 1600 Research Boulevard, Rockville, MD 20850, USA)

Abstract

The Literary Digest poll of 1936, which incorrectly predicted that Landon would defeat Roosevelt in the 1936 US presidential election, has long been held up as an example of how not to sample. The sampling frame was constructed from telephone directories and automobile registration lists, and the survey had a 24% response rate. But if information collected by the poll about votes cast in 1932 had been used to weight the results, the poll would have predicted a majority of electoral votes for Roosevelt in 1936, and thus would have correctly predicted the winner of the election. We explore alternative weighting methods for the 1936 poll and the models that support them. While weighting would have resulted in Roosevelt being projected as the winner, the bias in the estimates is still very large. We discuss implications of these results for today’s low-response-rate surveys and how the accuracy of the modeling might be reflected better than current practice.

Suggested Citation

  • Lohr Sharon L. & Brick J. Michael, 2017. "Roosevelt Predicted to Win: Revisiting the 1936 Literary Digest Poll," Statistics, Politics and Policy, De Gruyter, vol. 8(1), pages 65-84, October.
  • Handle: RePEc:bpj:statpp:v:8:y:2017:i:1:p:65-84:n:4
    DOI: 10.1515/spp-2016-0006
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/spp-2016-0006
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/spp-2016-0006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2012. "Is God in the details? A reexamination of the role of religion in economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1059-1075, November.
    2. Laha, A. K. & Putatunda, Sayan, 2017. "Travel Time Prediction for Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    4. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    5. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    6. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    7. Shaobo Jin, 2022. "Frequentist Model Averaging in Structure Equation Model With Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1130-1145, September.
    8. Minsu Chang & Francis J. DiTraglia, 2020. "A Generalized Focused Information Criterion for GMM," Papers 2011.07085, arXiv.org.
    9. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    10. Jing Zhou & Gerda Claeskens & Jelena Bradic, 2020. "Detangling robustness in high dimensions: composite versus model-averaged estimation," Papers 2006.07457, arXiv.org.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    12. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    13. John Copas & Shinto Eguchi, 2020. "Strong model dependence in statistical analysis: goodness of fit is not enough for model choice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 329-352, April.
    14. Shangwei Zhao & Aman Ullah & Xinyu Zhang, 2018. "A Class of Model Averaging Estimators," Working Paper series 18-11, Rimini Centre for Economic Analysis.
    15. Fletcher, David & Dillingham, Peter W., 2011. "Model-averaged confidence intervals for factorial experiments," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3041-3048, November.
    16. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    17. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    18. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    19. Yan Gao & Xinyu Zhang & Shouyang Wang & Terence Tai-leung Chong & Guohua Zou, 2019. "Frequentist model averaging for threshold models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 275-306, April.
    20. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:statpp:v:8:y:2017:i:1:p:65-84:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.