IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i11p4176-4197.html
   My bibliography  Save this article

Regret in the Newsvendor Model with Demand and Yield Randomness

Author

Listed:
  • Zhi Chen
  • Weijun Xie

Abstract

We study the fundamental stochastic newsvendor model that considers both demand and yield randomness. It is usually difficult in practice to describe precisely the joint demand and yield distribution, although partial statistical information and empirical data about this ambiguous distribution are often accessible. We combat the issue of distributional ambiguity by taking a data‐driven distributionally robust optimization approach to hedge against all distributions that are sufficiently close to a uniform and discrete distribution of empirical data, where closeness is measured by the type‐∞ Wasserstein distance. We adopt the minimax regret decision criterion to assess the optimal order quantity that minimizes the worst‐case regret. Several properties about the minimax regret model, including optimality condition, regret bound, and the worst‐case distribution, are presented. The optimal order quantity can be determined via an efficient golden section search. We extend the analysis to the Hurwicz criterion model, which generalizes the popular albeit pessimistic maximin model (maximizing the worst‐case expected profit) and its (less noticeable) more optimistic counterpart—the maximax model (maximizing the best‐case expected profit). Finally, we present numerical comparisons of our data‐driven minimax regret model with data‐driven models based on the Hurwicz criterion and with a minimax regret model based on partial statistical information on moments.

Suggested Citation

  • Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:11:p:4176-4197
    DOI: 10.1111/poms.13515
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13515
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    2. Inderfurth, K. & Kiesmüller, G.P., 2015. "Exact and heuristic linear-inflation policies for an inventory model with random yield and arbitrary lead times," European Journal of Operational Research, Elsevier, vol. 245(1), pages 109-120.
    3. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    4. Maurice E. Schweitzer & Gérard P. Cachon, 2000. "Decision Bias in the Newsvendor Problem with a Known Demand Distribution: Experimental Evidence," Management Science, INFORMS, vol. 46(3), pages 404-420, March.
    5. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
    8. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.
    9. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    10. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    11. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    12. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    13. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    14. Panos Kouvelis & Guang Xiao & Nan Yang, 2018. "On the Properties of Yield Distributions in Random Yield Problems: Conditions, Class of Distributions and Relevant Applications," Production and Operations Management, Production and Operations Management Society, vol. 27(7), pages 1291-1302, July.
    15. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    16. Zhi-Long Chen & Nicholas G. Hall & Hans Kellerer, 2017. "Dynamic Pricing to Minimize Maximum Regret," Production and Operations Management, Production and Operations Management Society, vol. 26(1), pages 47-63, January.
    17. Dimitris Bertsimas & Iain Dunning, 2020. "Relative Robust and Adaptive Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 408-427, April.
    18. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    19. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    20. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    21. Jun Wu & Jian Li & Jia Chen & Yingxue Zhao & Shouyang Wang, 2011. "Risk management in supply chains," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 5(2/3), pages 157-204.
    22. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    23. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    24. Burcu Tan & Qi Feng & Wen Chen, 2016. "Dual Sourcing Under Random Supply Capacities: The Role of the Slow Supplier," Production and Operations Management, Production and Operations Management Society, vol. 25(7), pages 1232-1244, July.
    25. Jinfeng Yue & Bintong Chen & Min-Chiang Wang, 2006. "Expected Value of Distribution Information for the Newsvendor Problem," Operations Research, INFORMS, vol. 54(6), pages 1128-1136, December.
    26. Sammi Y. Tang & Haresh Gurnani & Diwakar Gupta, 2014. "Managing Disruptions in Decentralized Supply Chains with Endogenous Supply Process Reliability," Production and Operations Management, Production and Operations Management Society, vol. 23(7), pages 1198-1211, July.
    27. Varun Gupta & Bo He & Suresh P. Sethi, 2015. "Contingent sourcing under supply disruption and competition," International Journal of Production Research, Taylor & Francis Journals, vol. 53(10), pages 3006-3027, May.
    28. Sammi Yu Tang & Panos Kouvelis, 2011. "Supplier Diversification Strategies in the Presence of Yield Uncertainty and Buyer Competition," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 439-451, October.
    29. Guillermo Gallego, 1998. "New Bounds and Heuristics for (Q, r) Policies," Management Science, INFORMS, vol. 44(2), pages 219-233, February.
    30. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    31. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    32. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    33. Anssi Käki & Juuso Liesiö & Ahti Salo & Srinivas Talluri, 2015. "Newsvendor decisions under supply uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 53(5), pages 1544-1560, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Yuanguang & Liu, Ju & Zhou, Yong-Wu & Cao, Bin & Cheng, T.C. Edwin, 2022. "Robust contract design and coordination under consignment contracts with revenue sharing," International Journal of Production Economics, Elsevier, vol. 253(C).
    2. Cao, Erbao & Tang, Jing, 2024. "Managing regretful newsvendors and supply chain performance through target-setting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Zhu, Xiaoyan & Cao, Yunzhi & Wu, Jinwei & Liu, He & Bei, Xiaoqiang, 2022. "Optimum operational schedule and accounts receivable financing in a production supply chain considering hierarchical industrial status and uncertain yield," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1142-1154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    2. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    3. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    6. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    7. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    8. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    9. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    10. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    11. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    12. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    13. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    14. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    15. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    16. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    17. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    18. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    19. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    20. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:11:p:4176-4197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.