IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v17y2007i4p575-598.html
   My bibliography  Save this article

Linear‐Quadratic Jump‐Diffusion Modeling

Author

Listed:
  • Peng Cheng
  • Olivier Scaillet

Abstract

We aim at accommodating the existing affine jump‐diffusion and quadratic models under the same roof, namely the linear‐quadratic jump‐diffusion (LQJD) class. We give a complete characterization of the dynamics of this class by stating explicitly the structural constraints, as well as the admissibility conditions. This allows us to carry out a specification analysis for the three‐factor LQJD models. We compute the standard transform of the state vector relevant to asset pricing up to a system of ordinary differential equations. We show that the LQJD class can be embedded into the affine class using an augmented state vector. This establishes a one‐to‐one equivalence relationship between both classes in terms of transform analysis.

Suggested Citation

  • Peng Cheng & Olivier Scaillet, 2007. "Linear‐Quadratic Jump‐Diffusion Modeling," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 575-598, October.
  • Handle: RePEc:bla:mathfi:v:17:y:2007:i:4:p:575-598
    DOI: 10.1111/j.1467-9965.2007.00316.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2007.00316.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2007.00316.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    3. Li Chen & H. Vincent Poor, 2003. "Markovian Quadratic Term Structure Models For Risk-free And Defaultable Rates," Finance 0303008, University Library of Munich, Germany.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    5. Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    2. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    3. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
    4. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    5. Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jul 2024.
    6. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    7. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
    8. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    9. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    10. Si Cheng & Michael R. Tehranchi, 2015. "Polynomial term structure models," Papers 1504.03238, arXiv.org, revised Dec 2020.
    11. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    12. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    13. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    14. Niels Rom-Poulsen, 2007. "Semi-analytical MBS Pricing," The Journal of Real Estate Finance and Economics, Springer, vol. 34(4), pages 463-498, May.
    15. Realdon, Marco, 2006. "Quadratic term structure models in discrete time," Finance Research Letters, Elsevier, vol. 3(4), pages 277-289, December.
    16. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    17. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    18. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    19. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    20. Gourieroux, C. & Monfort, A., 2008. "Quadratic stochastic intensity and prospective mortality tables," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 174-184, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:17:y:2007:i:4:p:575-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.