IDEAS home Printed from https://ideas.repec.org/a/bla/jfnres/v44y2021i3p497-512.html
   My bibliography  Save this article

Trump's tweets: Sentiment, stock market volatility, and jumps

Author

Listed:
  • Yusaku Nishimura
  • Xuyi Dong
  • Bianxia Sun

Abstract

We investigate the second‐moment response to tweets from US President Donald J. Trump in the US stock market. We find that Trump's tweeting positively and significantly affects the volatility and jumps during our sample's later period. The response of realized volatility to tweets is greater than that of continuous volatility because of the jump component in realized volatility. These results suggest that Trump's tweeting affects financial markets by sincreasing the market's jump tail risk, which cannot be hedged by investors without paying extra risk premiums, and therefore it requires careful consideration in investments.

Suggested Citation

  • Yusaku Nishimura & Xuyi Dong & Bianxia Sun, 2021. "Trump's tweets: Sentiment, stock market volatility, and jumps," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 497-512, September.
  • Handle: RePEc:bla:jfnres:v:44:y:2021:i:3:p:497-512
    DOI: 10.1111/jfir.12248
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jfir.12248
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jfir.12248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Suk-Joong Kim & Michael D. McKenzie & Robert W. Faff, 2018. "Macroeconomic News Announcements and the Role of Expectations: Evidence for US Bond, Stock and Foreign Exchange Markets," World Scientific Book Chapters, in: Information Spillovers and Market Integration in International Finance Empirical Analyses, chapter 5, pages 151-174, World Scientific Publishing Co. Pte. Ltd..
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    4. Tobias Burggraf & Ralf Fendel & Toan Luu Duc Huynh, 2020. "Political news and stock prices: evidence from Trump’s trade war," Applied Economics Letters, Taylor & Francis Journals, vol. 27(18), pages 1485-1488, October.
    5. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    6. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
    7. Born, Jeffery A. & Myers, David H. & Clark, William J., 2017. "Trump tweets and the efficient Market Hypothesis," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 103-109.
    8. Kari Harju & Syed Mujahid Hussain, 2011. "Intraday Seasonalities and Macroeconomic News Announcements," European Financial Management, European Financial Management Association, vol. 17(2), pages 367-390, March.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    10. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    11. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    12. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    13. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    14. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    15. Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    17. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    18. Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Constantin Colonescu, 2018. "The Effects of Donald Trump's Tweets on US Financial and Foreign Exchange Markets," Athens Journal of Business & Economics, Athens Institute for Education and Research (ATINER), vol. 4(4), pages 375-388, October.
    21. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    22. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    23. Jon Wongswan, 2006. "Transmission of Information across International Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1157-1189.
    24. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2007. "Real-time price discovery in global stock, bond and foreign exchange markets," Journal of International Economics, Elsevier, vol. 73(2), pages 251-277, November.
    25. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    26. Qi Ge & Alexander Kurov & Marketa Halova Wolfe, 2019. "Do Investors Care About Presidential Company‐Specific Tweets?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(2), pages 213-242, July.
    27. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishimura, Yusaku & Sun, Bianxia, 2021. "President’s Tweets, US-China economic conflict and stock market Volatility: Evidence from China and G5 countries," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    2. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    3. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    4. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    5. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    6. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    7. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    8. Xin Huang, 2015. "Macroeconomic News Announcements, Systemic Risk, Financial Market Volatility and Jumps," Finance and Economics Discussion Series 2015-97, Board of Governors of the Federal Reserve System (U.S.).
    9. Xin Huang, 2018. "Macroeconomic news announcements, systemic risk, financial market volatility, and jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 513-534, May.
    10. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    11. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    12. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    13. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    14. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    15. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    16. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Ahn, Yongkil & Tsai, Shih-Chuan, 2021. "What factors are associated with stock price jumps in high frequency?," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    18. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    19. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    20. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfnres:v:44:y:2021:i:3:p:497-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.