IDEAS home Printed from https://ideas.repec.org/a/ags/ijofsd/346692.html
   My bibliography  Save this article

Assessing efficiency differences in a common Agriculture Decision Support System - A comparative analysis between Greek and Italian durum wheat farms

Author

Listed:
  • Kyrgiakos, Leonidas Sotirios
  • Kleftodimos, Georgios
  • Kremantzis, Marios Dominikos
  • Vlontzos, George
  • Pardalos, Panos M.

Abstract

This study assesses inputs use efficiency of durum wheat farmers, subscribed under a common Agricultural Decision Support System (ADSS), especially designed by Barilla and HORTA for this cultivation. Data Envelopment Analysis was the main analysis used to highlight differences in the implementation stage of ADSS’s suggestions, between 4 agricultural firms (2 Italian and 2 Greek) (N= 563 farmers). By incorporating economic (variable costs) and environmental factors (Carbon, Water and Environmental footprints), performance differences between farms both on regional and national level arose. Lastly, closer monitoring for clarifying the reasoning of the obtained differences in the implementation stage is proposed.

Suggested Citation

  • Kyrgiakos, Leonidas Sotirios & Kleftodimos, Georgios & Kremantzis, Marios Dominikos & Vlontzos, George & Pardalos, Panos M., 2023. "Assessing efficiency differences in a common Agriculture Decision Support System - A comparative analysis between Greek and Italian durum wheat farms," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 14(01), January.
  • Handle: RePEc:ags:ijofsd:346692
    DOI: 10.22004/ag.econ.346692
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/346692/files/ASSESSING%20EFFICIENCY%20DIFFERENCES%20IN%20A%20COMMON.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.346692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. Devkota, Mina & Yigezu, Yigezu Atnafe, 2020. "Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 185(C).
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Yigezu, Yigezu Atnafe & Mugera, Amin & El-Shater, Tamer & Aw-Hassan, Aden & Piggin, Colin & Haddad, Atef & Khalil, Yaseen & Loss, Stephen, 2018. "Enhancing adoption of agricultural technologies requiring high initial investment among smallholders," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 199-206.
    5. Poorvi Iyer & Martina Bozzola & Stefan Hirsch & Manuela Meraner & Robert Finger, 2020. "Measuring Farmer Risk Preferences in Europe: A Systematic Review," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(1), pages 3-26, February.
    6. Rose, David C. & Sutherland, William J. & Parker, Caroline & Lobley, Matt & Winter, Michael & Morris, Carol & Twining, Susan & Ffoulkes, Charles & Amano, Tatsuya & Dicks, Lynn V., 2016. "Decision support tools for agriculture: Towards effective design and delivery," Agricultural Systems, Elsevier, vol. 149(C), pages 165-174.
    7. Galanopoulos, Konstantinos & Aggelopoulos, Stamatis & Kamenidou, Irene & Mattas, Konstadinos, 2006. "Assessing the effects of managerial and production practices on the efficiency of commercial pig farming," Agricultural Systems, Elsevier, vol. 88(2-3), pages 125-141, June.
    8. Veflen, Nina & Scholderer, Joachim & Elvekrok, Ingunn, 2019. "Composition of Collaborative Innovation Networks: An Investigation of Process Characteristics and Outcomes," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(1), January.
    9. Ioanna Reziti & Leonidas Zangelidis, 2019. "Regional Productivity and Efficiency Growth in Greek Agriculture," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 69(4), pages 3-20, October-D.
    10. A. M. Theodoridis & A. Psychoudakis, 2008. "Efficiency Measurement in Greek Dairy Farms: Stochastic Frontier vs. Data Envelopment Analysis," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 1(2), pages 53-67, December.
    11. Christian Bux & Mariarosaria Lombardi & Erica Varese & Vera Amicarelli, 2022. "Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    12. Kirtti Ranjan Paltasingh & Phanindra Goyari, 2018. "Impact of farmer education on farm productivity under varying technologies: case of paddy growers in India," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-19, December.
    13. Xianglong Tang & Chenyu Lu & Peng Meng & Wei Cheng, 2022. "Spatiotemporal Evolution of the Environmental Adaptability Efficiency of the Agricultural System in China," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    14. Alletto, Lionel & Vandewalle, Aline & Debaeke, Philippe, 2022. "Crop diversification improves cropping system sustainability: An 8-year on-farm experiment in South-Western France," Agricultural Systems, Elsevier, vol. 200(C).
    15. Olakojo, Solomon Abayomi & Onanuga, Olaronke Toyin, 2020. "Effects of Climate Change on the Long-run Crops’ Yields in Nigeria," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(03), September.
    16. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    17. Viergutz, Tim & Schulze-Ehlers, Birgit, 2018. "Exploring the Spatiotemporal Dynamics of Cooperative Members' Switching Decisions," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(5), January.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    20. Keith H Coble & Ashok K Mishra & Shannon Ferrell & Terry Griffin, 2018. "Big Data in Agriculture: A Challenge for the Future," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 40(1), pages 79-96.
    21. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    22. Weber, Rolf & Braun, Jürgen & Frank, Markus, 2022. "How does the Adoption of Digital Technologies Affect the Social Sustainability of Small-scale Agriculture in South-West Germany?," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 13(03), September.
    23. Reziti, I., 2020. "Total Factor Productivity Change In Greek Crop Production Using A Fare-Primont Index Analysis," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 8(2), April.
    24. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    2. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    3. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    4. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    5. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    6. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    7. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    8. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    9. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    10. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    11. Amar Oukil & Slim Zekri, 2021. "Investigating farming efficiency through a two stage analytical approach: Application to the agricultural sector in Northern Oman," Papers 2104.10943, arXiv.org.
    12. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    13. Roberto Cervelló Royo & Fernando García García & Francisco Guijarro-Martínez & Ismael Moya-Clemente, 2011. "Housing Ranking: a model of equilibrium between buyers and sellers expectations," ERSA conference papers ersa11p314, European Regional Science Association.
    14. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    15. Jens Kjærsgaard & Niels Vestergaard & Kristiaan Kerstens, 2009. "Ecological Benchmarking to Explore Alternative Fishing Schemes to Protect Endangered Species by Substitution: The Danish Demersal Fishery in the North Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(4), pages 573-590, August.
    16. Worthington, Andrew C. & Zelenyuk, Valentin, 2018. "Data envelopment analysis, truncated regression and double-bootstrap for panel data with application to Chinese bankingAuthor-Name: Du, Kai," European Journal of Operational Research, Elsevier, vol. 265(2), pages 748-764.
    17. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    18. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    19. Richard Simper & Maximilian J.B. Hall & Wenbin B. Liu & Valentin Zelenyuk & Zhongbao Zhou, 2014. "How Relevant is the Choice of Risk Management Control Variable to Non-parametric Bank Profit Efficiency Analysis?," CEPA Working Papers Series WP122014, School of Economics, University of Queensland, Australia.
    20. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.

    More about this item

    Keywords

    Agribusiness;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijofsd:346692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/centmde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.