IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v25y2020i3p80-83.html
   My bibliography  Save this article

Machine Learning Models for Corn Yield Prediction A Survey of Literature

Author

Listed:
  • Mohsen Shahhosseini
  • Guiping Hu

    (Department of Industrial and Manufacturing Systems Engineering, Iowa State University, USA)

Abstract

The ability to predict crop yields enables the timely and effective decision making for crop management, and regional agriculture system planning. The field crop corn is the largest crop in the U.S. and hence significant efforts have been devoted to predicting corn yields through various means. The present survey reviews the studies that used machine learning models and their variations to predict corn yield.

Suggested Citation

  • Mohsen Shahhosseini & Guiping Hu, 2020. "Machine Learning Models for Corn Yield Prediction A Survey of Literature," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(3), pages 80-83, July.
  • Handle: RePEc:adp:ijesnr:v:25:y:2020:i:3:p:80-83
    DOI: 10.19080/IJESNR.2020.25.556161
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.556161.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556161.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2020.25.556161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
    2. Silva, J.F. & Santos, J.L. & Ribeiro, P.F. & Marta-Pedroso, C. & Magalhães, M.R. & Moreira, F., 2024. "A farming systems approach to assess synergies and trade-offs among ecosystem services," Ecosystem Services, Elsevier, vol. 65(C).
    3. Kouame, Anselme K.K. & Bindraban, Prem S. & Kissiedu, Isaac N. & Atakora, Williams K. & El Mejahed, Khalil, 2023. "Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression approach," Agricultural Systems, Elsevier, vol. 209(C).
    4. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
    5. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    6. Paudel, Dilli & Boogaard, Hendrik & de Wit, Allard & Janssen, Sander & Osinga, Sjoukje & Pylianidis, Christos & Athanasiadis, Ioannis N., 2021. "Machine learning for large-scale crop yield forecasting," Agricultural Systems, Elsevier, vol. 187(C).
    7. Sumin Park & Haemi Park & Jungho Im & Cheolhee Yoo & Jinyoung Rhee & Byungdoo Lee & ChunGeun Kwon, 2019. "Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
    8. Britta L. Schumacher & Emily K. Burchfield & Brennan Bean & Matt A. Yost, 2023. "Leveraging Important Covariate Groups for Corn Yield Prediction," Agriculture, MDPI, vol. 13(3), pages 1-18, March.
    9. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    10. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    11. Che-Hao Chang & Jason Lin & Jia-Wei Chang & Yu-Shun Huang & Ming-Hsin Lai & Yen-Jen Chang, 2024. "Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data," Agriculture, MDPI, vol. 14(4), pages 1-21, March.
    12. Devkota, Mina & Yigezu, Yigezu Atnafe, 2020. "Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 185(C).
    13. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    14. Chen, Kefei & O'Leary, Rebecca A. & Evans, Fiona H., 2019. "A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool," Agricultural Systems, Elsevier, vol. 173(C), pages 140-150.
    15. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    16. Sakshi Balyan & Harsita Jangir & Shakti Nath Tripathi & Arpita Tripathi & Tripta Jhang & Praveen Pandey, 2024. "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    17. Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.
    18. van der Velde, M. & Nisini, L., 2019. "Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015," Agricultural Systems, Elsevier, vol. 168(C), pages 203-212.
    19. Barlin O. Olivares & Andrés Vega & María A. Rueda Calderón & Edilberto Montenegro-Gracia & Miguel Araya-Almán & Edgloris Marys, 2022. "Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    20. Banda, Enid & Rafiei, Vahid & Kpodo, Josué & Nejadhashemi, A. Pouyan & Singh, Gurjeet & Das, Narendra N. & Kc, Rabin & Diallo, Amadiane, 2024. "Millet yield estimations in Senegal: Unveiling the power of regional water stress analysis and advanced predictive modeling," Agricultural Water Management, Elsevier, vol. 291(C).

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:25:y:2020:i:3:p:80-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.