IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v10y2021i3p19-25.html
   My bibliography  Save this article

Analysis of UK and South African Strains of SARS-CoV-2 Using Resonant Recognition Model

Author

Listed:
  • Irena Cosic
  • Drasko Cosic
  • Ivan Loncarevic

Abstract

With newly discovered UK variant of SARS-CoV-2 virus, which has been shown to be about 70% more infectious and possibly 30% more deadly, there is a need to understand why mutations within this variant are so critical. Here, we have applied the Resonant Recognition Model (RRM) to computationally analyse six the most critical mutations within this UK variant and we have found that these mutations are significantly increasing RRM characteristics related to its viral activity. To test the approach, we have also applied the RRM to three the most critical mutations within the South African variant of SARS-CoV-2 virus and found that those mutations are increasing RRM characteristics related to viral activity, but not as much as UK variant. This is in complete agreement with known viral activities of these SARS-CoV-2 variants. Using the same approach, we have applied the RRM model to predict possible even more critical mutations, which probably have not yet occurred, but may lead to even more virulent mutants of SARS-CoV-2 virus. Both UK variant mutations, as well as RRM predicted mutations, have been presented within 3D structure of spike protein during the interaction with ACE2 receptor. It has been shown that all these mutations are in close proximity of interaction site between spike protein and ACE2 receptor.

Suggested Citation

  • Irena Cosic & Drasko Cosic & Ivan Loncarevic, 2021. "Analysis of UK and South African Strains of SARS-CoV-2 Using Resonant Recognition Model," International Journal of Sciences, Office ijSciences, vol. 10(03), pages 19-25, March.
  • Handle: RePEc:adm:journl:v:10:y:2021:i:3:p:19-25
    DOI: 10.18483/ijSci.2459
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/2459
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V102021032459.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.2459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Irena Cosic & Drasko Cosic & Ivan Loncarevic, 2020. "New Concept of Small Molecules Interaction with Proteins – An Application to Potential COVID-19 Drugs," International Journal of Sciences, Office ijSciences, vol. 9(09), pages 16-25, September.
    2. Jun Lan & Jiwan Ge & Jinfang Yu & Sisi Shan & Huan Zhou & Shilong Fan & Qi Zhang & Xuanling Shi & Qisheng Wang & Linqi Zhang & Xinquan Wang, 2020. "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor," Nature, Nature, vol. 581(7807), pages 215-220, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irena Cosic & Drasko Cosic & Ivan Loncarevic, 2021. "Analysis of Delta (Indian) Variant of SARS-CoV-2 Infectivity using Resonant Recognition Model," International Journal of Sciences, Office ijSciences, vol. 10(07), pages 6-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomokazu Tamura & Jumpei Ito & Keiya Uriu & Jiri Zahradnik & Izumi Kida & Yuki Anraku & Hesham Nasser & Maya Shofa & Yoshitaka Oda & Spyros Lytras & Naganori Nao & Yukari Itakura & Sayaka Deguchi & Ri, 2023. "Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Gang Ye & Bin Liu & Fang Li, 2022. "Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Yifan Wang & Caixuan Liu & Chao Zhang & Yanxing Wang & Qin Hong & Shiqi Xu & Zuyang Li & Yong Yang & Zhong Huang & Yao Cong, 2022. "Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Weiwei Ji & Qi Peng & Xueqiong Fang & Zehou Li & Yaxin Li & Cunfa Xu & Shuqing Zhao & Jizong Li & Rong Chen & Guoxiang Mo & Zhanyong Wei & Ying Xu & Bin Li & Shuijun Zhang, 2022. "Structures of a deltacoronavirus spike protein bound to porcine and human receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Irena Cosic & Drasko Cosic & Ivan Loncarevic, 2021. "Possibility to Interfere with Coronavirus RNA Replication Analyzed by Resonant Recognition Model," International Journal of Sciences, Office ijSciences, vol. 10(06), pages 22-28, June.
    6. Xuanming Guo & Jianli Cao & Jian-Piao Cai & Jiayan Wu & Jiangang Huang & Pallavi Asthana & Sheung Kin Ken Wong & Zi-Wei Ye & Susma Gurung & Yijing Zhang & Sheng Wang & Zening Wang & Xin Ge & Hiu Yee K, 2022. "Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Timothy J. C. Tan & Zongjun Mou & Ruipeng Lei & Wenhao O. Ouyang & Meng Yuan & Ge Song & Raiees Andrabi & Ian A. Wilson & Collin Kieffer & Xinghong Dai & Kenneth A. Matreyek & Nicholas C. Wu, 2023. "High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Hannah McClymont & Wenbiao Hu, 2021. "Weather Variability and COVID-19 Transmission: A Review of Recent Research," IJERPH, MDPI, vol. 18(2), pages 1-19, January.
    9. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Sun Jin Kim & Zhong Yao & Morgan C. Marsh & Debra M. Eckert & Michael S. Kay & Anna Lyakisheva & Maria Pasic & Aiyush Bansal & Chaim Birnboim & Prabhat Jha & Yannick Galipeau & Marc-André Langlois & J, 2022. "Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhenzhen Wang & Shiqi Hu & Kristen D. Popowski & Shuo Liu & Dashuai Zhu & Xuan Mei & Junlang Li & Yilan Hu & Phuong-Uyen C. Dinh & Xiaojie Wang & Ke Cheng, 2024. "Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Shawn B. Egri & Xue Wang & Marco A. Díaz-Salinas & Jeremy Luban & Natalya V. Dudkina & James B. Munro & Kuang Shen, 2023. "Detergent modulates the conformational equilibrium of SARS-CoV-2 Spike during cryo-EM structural determination," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Cedric C. S. Tan & Su Datt Lam & Damien Richard & Christopher J. Owen & Dorothea Berchtold & Christine Orengo & Meera Surendran Nair & Suresh V. Kuchipudi & Vivek Kapur & Lucy van Dorp & François Ball, 2022. "Transmission of SARS-CoV-2 from humans to animals and potential host adaptation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. David Chmielewski & Eric A. Wilson & Grigore Pintilie & Peng Zhao & Muyuan Chen & Michael F. Schmid & Graham Simmons & Lance Wells & Jing Jin & Abhishek Singharoy & Wah Chiu, 2023. "Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Mai Komori & Takuto Nogimori & Amber L. Morey & Takashi Sekida & Keiko Ishimoto & Matthew R. Hassett & Yuji Masuta & Hirotaka Ode & Tomokazu Tamura & Rigel Suzuki & Jeff Alexander & Yasutoshi Kido & K, 2023. "saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    18. Lu Lu & Reina S. Sikkema & Francisca C. Velkers & David F. Nieuwenhuijse & Egil A. J. Fischer & Paola A. Meijer & Noortje Bouwmeester-Vincken & Ariene Rietveld & Marjolijn C. A. Wegdam-Blans & Paulien, 2021. "Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Xiaoming Hu & Shuang Wang & Shaotong Fu & Meng Qin & Chengliang Lyu & Zhaowen Ding & Yan Wang & Yishu Wang & Dongshu Wang & Li Zhu & Tao Jiang & Jing Sun & Hui Ding & Jie Wu & Lingqian Chang & Yimin C, 2023. "Intranasal mask for protecting the respiratory tract against viral aerosols," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Katherine U. Gaynor & Marina Vaysburd & Maximilian A. J. Harman & Anna Albecka & Phillip Jeffrey & Paul Beswick & Guido Papa & Liuhong Chen & Donna Mallery & Brian McGuinness & Katerine Rietschoten & , 2023. "Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:10:y:2021:i:3:p:19-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.