The Economics of Citation

Jeong-Yoo Kim (Kyung Hee)
Insik Min (Kyung Hee)
Christian Zimmermann (UConn)

UConn-Wesleyan 2007 Workshop

What strategies do authors use when choosing whom to cite?

What strategies do authors use when choosing whom to cite?

▶ Become more convincing by citing respected authors

What strategies do authors use when choosing whom to cite?

- ▶ Become more convincing by citing respected authors
- Cater to editors and potential referees

What strategies do authors use when choosing whom to cite?

- Become more convincing by citing respected authors
- Cater to editors and potential referees
- Look more competent that cited authors

Correlation effect

Correlation effect

Reputation effect

Correlation effect Cite authors ranked higher Reputation effect

Correlation effect
Cite authors ranked higher
Reputation effect
Cite authors ranked lower

Basics Complete Information Incomplete Information

The Environment

An author makes claim ω_1

An author makes claim ω_1 , which is true with

probability μ_1

An author makes claim ω_1 , which is true with probability μ_1 (ability).

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2 , if it raises the posterior probability that ω_1 is true

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2 , if it raises the posterior probability that ω_1 is true:

$$\alpha_T \equiv P(\omega_1 = T | \omega_2 = T), \ \alpha_F \equiv P(\omega_1 = F | \omega_2 = F)$$

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2 , if it raises the posterior probability that ω_1 is true:

$$\alpha_T \equiv P(\omega_1 = T | \omega_2 = T), \ \alpha_F \equiv P(\omega_1 = F | \omega_2 = F), \ \alpha_T, \alpha_F > \frac{1}{2}$$

An author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2 , if it raises the posterior probability that ω_1 is true: $\alpha_T \equiv P(\omega_1 = T | \omega_2 = T)$, $\alpha_F \equiv P(\omega_1 = F | \omega_2 = F)$, $\alpha_T, \alpha_F > \frac{1}{2}$, common knowledge.

A risk-neutral author makes claim ω_1 , which is true with probability μ_1 (ability). Author cites ω_2 , true with probability μ_2 , if it raises the posterior probability that ω_1 is true: $\alpha_T \equiv P(\omega_1 = T | \omega_2 = T)$, $\alpha_F \equiv P(\omega_1 = F | \omega_2 = F)$, $\alpha_T, \alpha_F > \frac{1}{2}$, common knowledge.

 μ_1 and μ_2 are common knowledge.

$$\mu_1$$
 and μ_2 are common knowledge. Then, $P(\omega_1 = T | \omega_2) = \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$,

$$\mu_1$$
 and μ_2 are common knowledge. Then, $P(\omega_1 = T | \omega_2) = \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$, $P(\omega_1 = T) = \mu_1$.

$$\mu_1$$
 and μ_2 are common knowledge. Then, $P(\omega_1=T|\omega_2)=\alpha_T\mu_2+(1-\alpha_F)(1-\mu_2),$ $P(\omega_1=T)=\mu_1.$ Cite if $\mu_1<\bar{\mu}_1\equiv\alpha_T\mu_2+(1-\alpha_F)(1-\mu_2)$

$$\mu_1$$
 and μ_2 are common knowledge. Then, $P(\omega_1=T|\omega_2)=\alpha_T\mu_2+(1-\alpha_F)(1-\mu_2),$ $P(\omega_1=T)=\mu_1.$ Cite if $\mu_1<\bar{\mu}_1\equiv\alpha_T\mu_2+(1-\alpha_F)(1-\mu_2)$ or $\mu_2>\bar{\mu}_2\equiv\frac{\mu_1+\alpha_F-1}{\alpha_T+\alpha_F-1}.$

$$\mu_1$$
 and μ_2 are common knowledge. Then, $P(\omega_1 = T | \omega_2) = \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$, $P(\omega_1 = T) = \mu_1$. Cite if $\mu_1 < \bar{\mu}_1 \equiv \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$ or $\mu_2 > \bar{\mu}_2 \equiv \frac{\mu_1 + \alpha_F - 1}{\alpha_T + \alpha_F - 1}$.

Thus, less capable author can improve belief on his claim by citing more capable author, and vice-versa

 μ_1 and μ_2 are common knowledge. Then, $P(\omega_1 = T | \omega_2) = \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$, $P(\omega_1 = T) = \mu_1$. Cite if $\mu_1 < \bar{\mu}_1 \equiv \alpha_T \mu_2 + (1 - \alpha_F)(1 - \mu_2)$ or $\mu_2 > \bar{\mu}_2 \equiv \frac{\mu_1 + \alpha_F - 1}{\alpha_T + \alpha_F - 1}$.

Thus, less capable author can improve belief on his claim by citing more capable author, and vice-versa:

Correlation effect of citation.

 μ_1 known to proportion λ .

 μ_1 known to proportion λ . $1 - \lambda$ know $G(\mu_1)$.

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge.

 μ_1 known to proportion λ . $1 - \lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 .

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not.

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not. Weak Perfect Bayesian Equilibrium:

 μ_1 known to proportion λ . $1 - \lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not. Weak Perfect Bayesian Equilibrium:

(i) Author 1 cites ω_2 if $\mu_1 \leq \tilde{\mu}_1(\lambda)$

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not.

Weak Perfect Bayesian Equilibrium:

- (i) Author 1 cites ω_2 if $\mu_1 \leq \tilde{\mu}_1(\lambda)$
- (ii) $\tilde{\mu}_1(\lambda) < \bar{\mu}_1$

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not.

Weak Perfect Bayesian Equilibrium:

- (i) Author 1 cites ω_2 if $\mu_1 \leq \tilde{\mu}_1(\lambda)$
- (ii) $\tilde{\mu}_1(\lambda) < \bar{\mu}_1$
- (iii) $\tilde{\mu}_1(\lambda)$ is increasing in λ

Incomplete Information

 μ_1 known to proportion λ . $1-\lambda$ know $G(\mu_1)$. μ_2 common knowledge. Citation decision reveals something about μ_1 . Let $\tilde{\mu}_1$ be indifferent between citing or not.

Weak Perfect Bayesian Equilibrium:

- (i) Author 1 cites ω_2 if $\mu_1 \leq \tilde{\mu}_1(\lambda)$
- (ii) $\tilde{\mu}_1(\lambda) < \bar{\mu}_1$
- (iii) $\tilde{\mu}_1(\lambda)$ is increasing in λ :

Reputation effect of citation.

▶ RePEc Author Service: 12,205 authors

- ▶ RePEc Author Service: 12,205 authors
- ► RePEc listing: 450,000 works

- ▶ RePEc Author Service: 12,205 authors
- ► RePEc listing: 450,000 works
- Citation analysis: Impact factors

- ▶ RePEc Author Service: 12,205 authors
- ► RePEc listing: 450,000 works
- Citation analysis: Impact factors
- RePEc author rankings

Data used

Authors with references

Data used

- Authors with references
- References with ranked authors

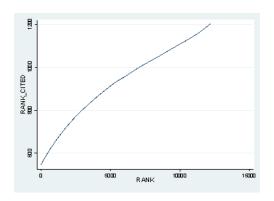
Data used

- Authors with references
- ▶ References with ranked authors
- **▶** 12,205 → 9,127

Correlation effect

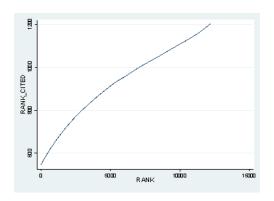


Correlation effect



$$RANK_CITED = \beta_0 + \ \beta_1$$
 $RANK + e$

Correlation effect



$$RANK_CITED = \beta_0 + 0.05 RANK + e$$

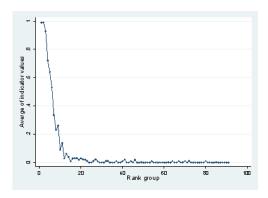
$$(0.002)$$

Reputation effect I

 $P(RANK_CITED > RANK)$

Reputation effect I

$P(RANK_CITED > RANK)$



Reputation effect II

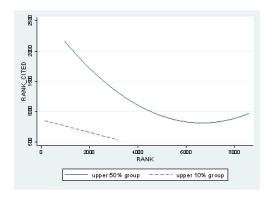
$$RANK_CITED = \beta_0 + \beta_1 RANK + \beta_2 RANK^2 + e$$

Reputation effect II

 $RANK_CITED = \beta_0 + \beta_1 RANK + \beta_2 RANK^2 + e$ Sort by $RANK_NW$, top 10%, 45%–55%

Reputation effect II

 $RANK_CITED = \beta_0 + \beta_1 RANK + \beta_2 RANK^2 + e$ Sort by $RANK_NW$, top 10%, 45%–55%



▶ North-Americans are higher ranked

- ▶ North-Americans are higher ranked
- ► AVE_CITING = $\beta_0 + \beta_1 RANK_NW + \beta_2 EUROPE + \beta_3 OTHERS + e$

- North-Americans are higher ranked
- ► AVE_CITING = $\beta_0 + \beta_1 RANK_NW + \beta_2 EUROPE + \beta_3 OTHERS + e$
- ► Tobit results:

- North-Americans are higher ranked
- ► AVE_CITING = $\beta_0 + \beta_1 RANK_NW + \beta_2 EUROPE + \beta_3 OTHERS + e$
- ► Tobit results:

Var.	Coeff	St. Err.	Т
RANK_NW	-0.00066	0.00001	-60.76
EUROPE	-0.438	0.0648	-6.76
OTHERS	-0.452	0.105	-4.29

Conclusions

1. Correlation effect: cite better authors

Conclusions

- 1. Correlation effect: cite better authors
- 2. Reputation effect: cite more selectively when uncertainty about own competence

Conclusions

- 1. Correlation effect: cite better authors
- 2. Reputation effect: cite more selectively when uncertainty about own competence
- 3. North-American bias