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Abstract

This paper models interactions of firms in a pre-trading(fixed network of lend-

ing/borrowing) period whereby firms set fixed lending rates given loan management

cost. We show strategic substitution in the rate each firm sets and more fundamen-

tally, propose that the rates charged to debtors by a creditor firm is likened to results

from a private provision of public good in networks game. We then highlight spe-

cific core-periphery network properties in relation to interdependence and Nash rate

charged by firms. For welfare policies, we find neutrality of intervention policies that

create or reduce transaction cost and improvement based on policies that provide

administrative subsidies thus creating an avenue for cost effective resource transfer

policy. Lastly, we find significant relationship between a firms centrality measured

by weaker negative externality and welfare improvement due to such subsidy.
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1 Introduction

Financial behaviours can be studied in several ways including interactions which are a

function of the link between parties(firms) involved. Links commonly modeled are those

which captures contractual obligation of one party which represents an asset to the other

party. Because a contract can only be created by the mutual consent of the two potential

firms involved, links project such attributes among a host of properties. Also with these

links comes exposure. Sometimes these exposure could be advantageous to firms for ex-

ample in a firms ability to external shocks and promotion of stability (Elliott, Golub, &

Jackson, 2014). However, where these links are binding and difficult to sever, they could

be a source of negative spillover to one or more firms.

We explore endogenous interest(lending) rate determination in fixed lending/borrowing

network where firms account for administrative overheads associated with levels of total

lending and a percentage of borrowing. Inter-firm lending rate, as core of the contract

clause, is the additional amount over a period of time to which a lending firm charges

a borrowing firm for such transaction. In this case, firms give significant attention to

cost arising from its debt management procedure. It is not a novel observation that the

vast amount of businesses engage in credit financing. Many of such businesses have both

creditors (suppliers, banks etc) as well as debtors (customers,retailers, etc). In order to

effectively keep track and ensure a smooth settling process, administrative resources are

then devoted towards different aspects of such overall loans. One major assumption we

make is to relate the total amount of loans1 to total administrative cost. The intuition

here remains that large amount of loans implies large volume of transaction to which raises

risk of significant amount of loss to both the personnel2 involved and the business at large.

Such delicate nature then spurs the need for remuneration to match up to such risk, hence

greater expenses. Other types of market frictions could also add to this cost. This is so

that assuming a single clearing period, all liabilities are settled such that the lending firm

regains its cash and some premium.

As a main result, we show that the optimal lending rate a firm charges to its debtors is

on derived from a game of strategic substitution. such substitution behaviours are in line

1We discount those from creditors as we show later in the model.
2Accountant, Debt Administrator, Legal teams, etc.
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with major public goods in network literature such as Bramoullé, Kranton, and D’amours

(2014), Allouch (2015), etc. We then show that Nash equilibrium exists and is uniquely

defined in pure strategies given our network game. We then discuss special equilibrium

properties in networks such as the Core-periphery network which are specifically well

bounded. We find that core firms are closely dependent on links from other core firms

while giving less priority to periphery firms. Periphery firms on the other hand substitute

from rates charged by their core interlinks.

Adopting a utilitarian welfare approach, we show welfare neutrality of firms, whose

equilibrium lending rate is positive, to intermediation policies. Given such neutrality,

we hold that Pareto improvement of welfare can be achieved at zero cost to planner by

leaking out little amount from the paying system (such that active firms are fixed) and

proportionally splitting it so as to subside for loan management expenses. Lastly, we then

show quality of firms least externality based centrality is vital for targeting firms with

subsidy policies.

1.0.1 Related Literature

Rates agreed upon by such parties become an asset in that they contribute potentially to

profit of firms from an inter-firm lending in a given trading period. Sometime these rates

are determined based on set regulatory benchmarks, for example in case of banks premiums

are added to the inter-banks offered rate (e.g Libor as shown by Eisl, Jankowitsch, and

Subrahmanyam (2017), Coulter, Shapiro, and Zimmerman (2017), Duffie and Dworczak

(2014), Abrantes-Metz, Kraten, Metz, and Seow (2012) and Eaglesham (2013)). There

might be other benchmark at typical firms level which for example might be the risk-free

interest rate used in CAPM analysis. We however pay less attention to such parameter.

Instead we focus on situations where by firms primarily make decisions as to their lending

rate. An existing work in this is found in Aldasoro, Gatti, and Faia (2017) which models

an endogenous interest premium in a system in which firms given potential cascading

defaults/systemic risk. Hence, the additional premium is determined while accounting for

estimated default probability.

Earlier discussion has made reference to strategic interactions and more sepcifically, a

substitution relationship. Strategic interdependence here can be traced to network prop-
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erties of our debtors and/or creditor firms as a form of financial network. Most finan-

cial network literature such as Morris (2000), Morris and Shin (2001), Allen and Babus

(2008), Babus (2016), Bhattacharya, Gale, Barnett, and Singleton (1985) have focused

on systemic risk as well as other issues to do with risk contagion and financial network

stability e.g Caballero and Simsek (2013), Cabrales, Gottardi, and Vega-Redondo (2014),

Nier, Yang, Yorulmazer, and Alentorn (2007), Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2015), Greenwood, Landier, and Thesmar (2015)(on banks), Galeotti, Ghiglinoy, and

Goyal (2016), König, Tessone, and Zenou (2009), Bilkic, Gries, et al. (2014), Gollier,

Koehl, and Rochet (1997), etc. Others on network influence and power as in Demange

(2016) as well as Aldasoro and Angeloni (2015) while a host of literature pay attention to

liquidation as well as network financing such as Allouch and Jalloul (2016), Amini, Fil-

ipović, and Minca (2016), Feinstein (2017), Rogers and Veraart (2013) and Elsinger, Lehar,

and Summer (2006) to mention but a few. However, it is noted that since systemic risk

and stability is the key focus of most of the works mentioned above, strategic interaction

plays less importance.

Additionally, little attempt have been given to link interactions in debt networks to

public good games which yields best replies revealing strategic substitution. However,

those on contagion in the previous par graph rely on strategic complements. Public good

games with strategic substitution are found in in Allouch (2015) and Allouch and King

(2018a)(which shows equilibrium in a fully bounded action profile). Also importantly is

Bramoullé and Kranton (2007) and Bramoullé et al. (2014) where by interaction mostly

based on strategic substitution is identified. Such games of public good provision and

more specifically private public good provision can materialize in different ways in finan-

cial networks. That being said, the underlying ideas has not been aimed at identifying

such behaviors in financial network games. A contrast of this work from seminal works

including Bramoullé and Kranton (2007) and Allouch (2015) is the close attention paid to

interactions to undirected network (with Bramoullé et al. (2014) providing initial intuitions

as to weighted and direct network). While there are observable differences, intuitions are

very useful in observing such behaviors in financial networks which are uni-directional and

weighted in nature.

Our results on neutrality is also in distinction to neutrality of income redistribution.
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For income redistribution, neutrality holds such that wealth transfer between active agents

in a public good game leads to no change in aggregate public good provision and individual

consumption. These forms of neutrality is discussed well in Bergstrom, Blume, and Varian

(1986), Wells (2004) as well as Allouch (2015) though we point out that our intervention

are not particularly redistributive in nature. lastly, our targeting criterion has a lot of

similarities to works like key player concepts in works like Ballester, Calvó-Armengol, and

Zenou (2006), Galeotti, Golub, and Goyal (2020), Belhaj, Bervoets, and Deröıan (2016)

as well as Belhaj and Deröıan (2019).

2 The Model

Assume a three period economy consisting of N̂ = {1, . . . , n} set of firms. We denote the

set of periods denoted as T such that T = {t − 1, t, t + 1}. For every firm i ∈ N̂ , its

neighborhood is denoted as N and Ni = {N out
i ∪ N in

i } ⊂ N̂ where N out
i represents firm

i ∈ N ’s debtors and N in
i represents firm i ∈ N ’s creditors. Debtors are those whom the

firm lends to and creditors are who the firm lends from. The amount to be borrowed by

each firm i ∈ N̂ is given as bi : bi > 0 ∀ i ∈ N̂ . This interaction forms a borrowing

network g(N̂ , ĝ) with g representing links between firms.

Each firm strictly lends to each other based on the network g(N̂ , ĝ) in t and as such

g(N̂ , ĝ) indicate borrowing/lending contract in this model. The network g(N̂ , ĝ) is set at

t − 1 ∈ day so that it is exogenous to t onward. At t + 1 links are dissolved (cleared).

Given that if firm j ∈ N in
i , then ĝji > 0 while being zero otherwise, then

∑
j∈N ini

ĝji = 1

and
∑

j∈N ini
ĝjibi = bi. A firm while lending charges an extra amount it sets at t ∈ day

denoted as ri. This rate ri remains fixed for the rest of T once set. Also, we assume that

firms then incur additional cost to manage debtors and creditors accounts and repayment

procedures which we capture under loan management cost.

In the economy, a typical firm i’s lending is then given as as;

b−i =
∑

j∈N outi

ĝijbj, ∀ i ∈ N̂ . (2.1)

As such its balance sheet at t+ 1 is given as follows;
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Table 1: Firms balance Sheet at t+ 1

Assets Amount Liability Amount

Debtors xxxx Creditors xxxx

Profit xxxx

So then assume a firm i ∈ N̂ who is scheduled at t to lend to as well as borrow from

other firms within the same system (Thus creating incoming and/or outgoing links). Then

profit for the firm i ∈ N̂ intuitively drawn from its balance sheet marks its payoff which

we show subsequently.

i j
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i

bkl

b
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b lj

Figure 1: A Bounded Borrowing Network:
Arrows (edges) point to direction of borrowers and originate from lenders.

We observe that the firm i ∈ N̂ is only concerned about his lenders and borrowers as

opposed to the entire network. Since we ignore default risk it then implies that regardless

of the nature of borrowing network, each firm i can identify its position given a star which

carries its lenders and borrowers.

Assume for now that N̂ = {i, j, k, l}. Observe from fig. 1 and the break down in

fig. 2. It shows that from any directed network of borrowing and lending, for example

the network in fig. 1, it can further be broken down into sub-networks as in fig. 2 thus

capturing each individual firms lending and borrowing.
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ĝ
ij bj

g lj
b j

ĝ
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ĝ
jk b

k g
ki bi

gkl
b l

(c) Firm k

l

k

i j

gkl
b l

g li
b i

g
lj bj

(d) Firm l

Figure 2: Decomposed Network to capture pivotal links. We see that for decision making
purpose, it is direct incoming and outgoing link that are useful to firms decision. This is as

Loan management cost is spent mainly through managing a firms asset/liabilities.

To capture this into the firms’ payoff in the simplest, assume the firm i ∈ N̂ has

included in its cost, the cost of loan management. This loan management cost is split into

2 main parts. The first a homogeneous constant κ which measures the level of efficiency in

managing overall debtors and creditors accounts and recovery process. In itself, a higher

κ implies lesser efficiency in loan management while a lesser κ implies greater efficiency.

Such efficiency could arise from specialization, technical know-how, technological progress

and other factors that imply positive economies of scale for the firm. The second part is

the endogenous loan size parameter which we denote as µi for the given firm i ∈ N̂ . More

formally, we define µi∈N̂ as follows;

µi(ri, r−i∈N ini ) = b−i • ri + a
∑
j∈N ini

rj (ĝjibi) , (2.2)

where the parameter a ∈ R+ captures the degree to which interest from debtors increases

administrative cost. Properties of this parameters are crucial to establish uniqueness which

is captured subsequently. Let r = (ri)i∈N ∈ Rn
+ be the lending rate vector for firms, we

assume that the firm i ∈ N̂ has the following variable loan management cost;
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κ • f (µi(ri)) (2.3)

such that we then have the following important assumption;

Assumption 1. ∀ firm i ∈ N̂ , we hold that;

∂f (µi(ri))

∂ri
> 0,

∂2f (µi(ri))

∂r2
i

> 0.

We assume convexity here due to the fact that we assume that cost exponentially rises

as total variable loan obligation to and from the firm rises. The (2.3) captures the variable

loan management cost which is weighed using the parameter κ that would usually assume a

very small vale. Loan management cost as defined here includes both the firm i’s debtors

management as well as its creditors. We have provided the justification behind this in

earlier sections.

2.1 Strategic Substitution

We then hold that the firm i ∈ N̂ , f (µi) = (µi)
2 which fits well into assumption 1. Then

the firm i ∈ N̂ , has the following payoff function,

Pi(ri|rj, . . .) = b−i • ri −
∑
j∈N ini

rj (ĝjibi)− κ(µi)
2. (2.4)

To elaborate, the payoff captures variable components of a firm i ∈ N̂ since for example,

lends out a total of b−i and at t+1, gets back b−i • (1+ri) from its debtors. So what it gets

at t+ 1 is b−i + b−iri. Additionally, it pays
∑

j∈N ini
(1 + rj) (ĝjibi) to its creditors such that

it is broken into
∑

j∈N ini
(ĝjibi) +

∑
j∈N ini

rj (ĝjibi). We thus define the firm i ∈ N̂ payoff

as one that captures only the parts which are multiples of the action profile r.

To optimize Pi, the Lagrange equation is given as;

max
ri

Qi(ri) = b−i • ri −
∑
j∈N ini

ĝjibi (rj)− κ(µi)
2 −Ψri (2.5)

With the complementary slackness condition Ψri = 0 being such that Ψ = 0, the FOC
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thus equates the marginal benefit to marginal cost (MBi = MCi) which is given as;

∂Qi

∂ri
= 0⇒ 2b−i(µi) =

b−i
κ
.

We then make ri the subject of the formula using µi as in (2.2) so that we have the

firm i’s optimal lending rate as,

ri =
1

2κb−i
− a

∑
j∈N ini

ĝjibi
b−i

rj. (2.6)

Let us have πi = 1
2κb−i

and gji =
ĝjibi
b−i

=
bji
b−i
∀ j ∈ N in

i , we have;

ri = πi − a
∑
j∈N in

gjirj. (2.7)

The linear reaction curve (best reply) for the firm− i when ri∈N̂ ∈ [0,R+] is given as;

ri = max

πi − a ∑
j∈N in

gjirj, 0

 . (2.8)

The lending rate πi reflects the autarkic amount charged to each firm j such that

j ∈ N in
i . firm i is desires a greater ri if it expects to lend in greater deal compared to

its borrowing and thus submits its rate accordingly. However, the magnitude of its rate

charged depends on its best reply. πi additionally reveals the Engels curve for the firm i.

Also, strategic substitution properties is captured in δri
δrj

= −agji for j ∈ N in
i .

Let G = [gji] be a zero-diagonal matrix and the game arising from (2.8) be denoted

as Γ(G, r, a) . We make distinction between participating firms and those who do not

participate in Γ(G, r, a). This is because financial networks could posses cyclical intercon-

nection as we see in line works within Eisenberg and Noe (2001) framework. Assume a

subset S ⊂ N̂ . We have the formal definition;

Definition 1. A firm i ∈ N̂ is a sink-node ⇐⇒ N out
i = {}.

Let also N ∈ N̂ so that |S ∪N = N̂ meaning that a firm iN lends to at least one other

firm. A Sink node is a debtor to one or more firms but does not lend out. This distinction
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is important for example if we have a firm i such that N out
i = {}, then gji =∞ as b−i = 0.

It means are unable to define firm i’s best reply as it makes no decision. Furthermore,

we could have also the firm i such that N in
i = {}. Let Gi represent the i − th row of

the matrix G, we would have Gi = (0)i∈N leading to a pure strategy Nash equilibrium

ri = πi. This is described as strategic dominance as its lending rate is made in isolation.

To avoid these instances, we introduce another important but common concept to directed

networks as follows;

Definition 2. A directed graph g(N , g) is strongly connected (SC) if and only

if for every {0, n} ∈ N , there exist a closed directed walk (the sequence

0, g01, 1, g12, . . . , gn−1,n, n, g0,n, 0) from 0 to 0.

Then going further, we will rely on the assumption written below;

Assumption 2. The graph g(N , g) is strongly connected so that the set ∀ firm i ∈ N ,

firm i is a strongly connected firm(SCF).

This as such ensures that we avoid dominant equilibrium outcomes or undefined best

replies given sink nodes (for any firm i ∈ S, b−i = 0 such that ri =∞).

3 Pure Strategy Solutions

We define in this section the shape and characteristics of equilibrium under such game

Γ(G, r, a).

3.1 Uniqueness and Stability

We present the existence of the equilibrium and conditions for uniqueness. To support

our next few results, we define a key attribute which is positive definiteness. Given the

vast amount of network literature emphasising on symmetric matrix, we define positive

definiteness given our model as follows;

Definition 3. Let M be a matrix and ν1(M), . . . , νn(M) be the eigenvalues of the matrix
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(M). Then M is positive definite if and only if it holds that;

ν1

(
M + MT

2

)
, . . . , νn

(
M + MT

2

)
> 0. (3.1)

Let the minimum eigenvalue of a matrix M be denoted as νmin(M), we have the

following lemma;

Lemma 1. The matrix (I + aG) is positive definite in so far a ∈
]
0, 1∣∣∣νmin(G+GT

2
)
∣∣∣
[

.

Proof. See Appendix for proof.

For asymptotic properties of Nash equilibrium for firms lending rate interrelationship,

we identify stability as the ability for small changes in rates charged in a certain period

that differs from that suggested by the best reply converging back to the steady Nash

equilibrium over when the game is repeated over and over. We summarize these properties

under the following proposition;

Proposition 1. Given the parameter ′a′ meets the boundary conditions as in lemma 1,

there always exists a unique Nash equilibrium in pure strategies for the game Γ(G, r, a)

and the unique Nash equilibrium in pure strategies of the game Γ(G, r, a) is always asymp-

totically stable.3

Proof. From Rosen (1965) concept of diagonal strict concavity, we understand that a suffi-

cient condition for the payoff P (r) to be diagonally strictly concave, then H(r,1)+H(r,1)T

must be negative definite where H(r,1) is the Jacobian with respect to r of P
′
(r). Since

it hold that the Jacobian H(r,1) = −(I + aG) , then the condition is achieve should

(I + aG) be positive definite which lemma 1 satisfies. It is then shown that Nash equilib-

rium is unique if and only if lemma 1 is satisfied.

This is so that each firm capture the amount charged by their creditors on borrowings

in order to determine the rate charged to debtors without consideration for their own

power.4

3This follows uniqueness results from Rosen (1965) and also Bramoullé et al. (2014) where it shows
that unique Nash equilibrium is always asymptotically stable.

4The magnitude to which a firm i ∈ N rate charged ri affects all other firms outcome.
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3.2 Analysis of Equilibrium

Assume π = (πi)i∈N ∈ Rn
+ is also a column vector while r∗ = (r∗i )i∈N ∈ Rn

+ is the Nash

equilibrium vector. Following the best reply in (2.8), draw distinction between active and

inactive firms in the definition below.

Definition 4. A firm i ∈ N is thus defined as active if and only if r∗i (N , a) ∈ ]0,R+] and

non-active if r∗i (N , a) = 0 .

Let the set of active firms be denoted with the set A ⊆ N and hence non-active firms

be N − A ( N . Then using intuitions from Bergstrom et al. (1986), Bramoullé et al.

(2014) and more closely,Allouch (2015), we have the following;

Proposition 2. A set of rates vector r∗(A, a) with active firms A 6= {} is a Nash equilib-

rium ⇐⇒ the following conditions hold true;

1.

(I + aG)A×A • r∗A = πA

2.

aGN−A×A • r∗A ≥ πN−A

Proof. See Appendix for proof.

The proposition above translates to the fact that firms become non-active when targets

are achieved by simply charging a zero rate and thus, substitute for rates charged of active

firms in such a way that the outcome is the same or is greater than the outcome from the

non-active firms’ autarkic rate charged to debtors. It also holds then that Nash equilibrium

for the game has to include atleast one active firms such that A cannot be a null set. We

show a simple algorithm in the appendix which efficiently computes this equilibrium5.

Furthermore, we draw the following statement from the proposition 2 as follows;

5A simple computational algorithm takes 2|N |−1 iterations representing possible combination of active
firms. It is noteworthy that even if we relax assumption 2 so that N̂ = {N ,S}, Equilibrium is simply
obtainable by computing for N . Hence, for each firm i ∈ N such that a firm j ∈ S ∩ N out

i , then
b−i = bij + . . .
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Corollary 1. Assume that ∀ i, j ∈ A, b−i = b−j so that π = π • 1A. This means that

r∗(A,−a) = π • b(A,−a) so that ∀ firm i ∈ A;

r∗i (G,A, a) = π • βi(A,−a),

where βi(A,−a) refers the Bonacich independence index6 or simply independence index of

an active firm i implying b(A,−a) = (βi(A,−a))i∈A ∈ Rn
+.

Proof. Because we have the following;

b(A,−a)
def
= (I + aG)−1

A×A • 1A. (3.2)

This implies that Nash equilibrium rate is of each firm is directly proportional to their

independence index. The independence index is so named because G = [gji] accounts

for the strength of incoming links. Also since in the series, (I − aG)A×A • 1A dominates

((I−aG)A×A •πA dominates the Nash equilibrium r(A,−a)), then the greater the strength

of gji for each firm i, the lower its βi(A,−a)]. This then hints as to which firm i charging

less amount in lending rate. We explore some special network properties in relation to this

in the next section.

3.3 Equilibrium and Inactive Firms

Our proposition 2 shows that Nash equilibrium could be such that N − A 6= {}. A

firm i ∈ N − A thus has an ri = 0 as its equilibrium rate charged to its debtors. We

draw a swift distinction between inactive firms in our model and the concept of free-riders

found in major public goods in networks papers such as Bramoullé and Kranton (2007),

Bramoullé et al. (2014) as well as Allouch (2015). To understand this is to understand the

best replies given in (2.8) as an outcome of the payoff. Observe that loan management is

a main objective of the firm and as such, strategic substitution arises in a bid to reduce

such management cost. So while a firm who borrows cannot influence (directly) the rate

6So as not to confuse it with Bonacich Centrality which is βi(G
T , a) for a firm i.

13



to which it is charged, it can charge a corresponding rate to its debtors to balance and

optimize loan management expenses. For this reason, charging a zero rate to debtor thus

arises from the fact the present loan management cost is quite substantial that a positive

rate would be even more harmful to the firm.

The idea here is that an inactive firm i ∈ N − A is not necessarily free-riding the

provision of other firms but on the other hand, is simply avoiding any further cost as a

result of its own decision since its creditors has increased such cost to the maximum.

4 Core-Periphery Networks

We explore in a unique way, further properties of our equilibrium. More specifically we aim

to discuss and show unique network properties of active firms and what the implication

might be in terms of the equilibrium lending rate each firm charges.

1

2

3
4

5

6

7

8
9

10

Figure 3: Core-periphery network bilateral links between periphery and core sets.

To do this, we examine a stylized case of a network which is shown in fig. 5 which con-

tains a core-periphery network where each firm in the core-periphery lends and borrows

14



to others. Core-periphery network has been widely stylized within the inter-bank network

literature especially within the line of financial contagion and systemic risk. Recent ex-

amples of such studies include Chiu, Eisenschmidt, and Monnet (2020), Lux, Fricke, et al.

(2012), Van Lelyveld et al. (2014) as well as Sui, Tanna, and Zhou (2020). We describe a

core-periphery network as one which has 2 groups of firms, the core firms whose set we de-

note as Cr and the peirphery set which we denote as Pr. For a digraph g(N , g) such that

Ω = {Cr, Pr} = N . Also, assume N (Ω, r∗) = A such that all firms in the core-periphery

network are actively charging lending rates at equilibrium. The core-periphery network

has the following graph form;

G(Cr, Pr) =

 Cr × Cr Cr × Pr

Pr × Cr Pr × Pr

 =

 G(CC) G(CP)

G(PC) G(PP)

 (4.1)

For a network to be deemed core-periphery, it means it can be grouped into the block

partition as shown above.

Assumption 3 (Block Matrix Properties). Given G(Cr, Pr) which is strictly unidirec-

tional let Ω = {Cr, Pr}. We have the following conditions;

1. |Pr| = |Cr|,

2. G(PP) = 0,

3. G(PC) = % • I,

4. G(CP) = θ • I.

This indicates that we allow for bilateral relationships.7. We are able to compute the

Nash Equilibrium using the block-partition matrix as in (4.1) to compute each firms Nash

Equilibrium:

Proposition 3. Let g(Ω, g) be a directional graph whose topology is core-periphery in

nature. Also assume Ω = {Cr, Pr}, π = (πCr,πPr)
T and assumption 3 holds. In so far

7One could possibly argue that bilateral liabilities would not hold given that it can simply be netted
off. However, because each firm makes separate lending rate decision, bilateral links need be exactly as
they are as contractual properties might differ as we show for example in fig. 5 where periphery and core
have between them, such bilateral relationships.
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as a ∈
]
0, 1∣∣∣νmin(G+GT

2
)
∣∣∣
[

, we have the following Nash Equilibrium;

r∗Cr(G,Ω, a) =

(
I +

a

1− a2θ%
G(CC)

)−1
(πCr − aθπPr)

1− a2θ%
, (4.2)

r∗Pr(G,Ω, a) = πPr − a% • r∗Cr(G,Ω, a). (4.3)

Proof. See Appendix for proof.

The (4.3) above then provides us with an initial intuition as we can see that for any

firm i ∈ Cr and a firm j ∈ Pr|j ∈ {Ni ∩ Cr}, then it holds that;

agij • r
∗
i (G,Ω, a) + r∗j (G,Ω, a) = πj, (4.4)

thus implying a direct strategic substitution relationship between Nash lending rate

decision of each core and its corresponding periphery. The greater the Nash rate the core

charges, the less its corresponding periphery lending rate is and vice versa.

Furthermore, (4.2) shows the core set Nash Equilibrium is then modified into a mea-

sure which includes the value a
1−a2θ% . This parameter takes the form of a new attenuation

parameter such that it replaces the initial attenuation parameter a. The new attenuation

parameter is greater as a
1−a2θ% > a and since the Bonacich expression in (4.2) takes the

power series I− a
1−a2θ%G(CC) +

(
− a

1−a2θ%G(CC)
)2

+
(
− a

1−a2θ%G(CC)
)3

+ . . ., it implies

that greater substitution from distant neighbours. However, this time, the weight of re-

lationship between the core and periphery set of firms now determines how much of such

weight is accounted for in the Nash equilibrium . To show, since we have that 1− a2θ% ↓

if either θ or % rises, then it means that the link a
1−a2θ%G(CC) is strengthened to such rise

in θ and/or % and weakened when the reverse holds.

Lastly, the density of the core set is accounted for in the matrix G(CC) such that the

diversification of core firms within the core network is crucial in determining the rate to

which the core firms would charge.
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4.1 Equitable Partition

We are able to understand further special properties of the core periphery relation under

possible stylized partition network property. We hold the following assumption for this

part of the paper;

Assumption 4. Given Ω = {Cr, Pr}, we hold that G(CC) •1 = ρ •1, while G(PC) = % •I

and G(CP) = θ • I for ρ, %, θ ∈ ]0,R++].

This yields a core-periphery network which has both out-equitable and in-equitable

properties as defined using Kada (2020) as well as Deng, Sato, and Wu (2007) as follows;

Definition 5 (Equitable Partition). Consider Ω = {Cr, Pr} where G(CC) • 1 = ρ • 1 and

G(PP) • 1 = 0 • 1 arising from G(PP) = 0 (from assumption 3) so that Cr and Pr are

Partitions. If we have that G(PC) = % • I and G(CP) = 0 • I then Ω is ’out-equitable’

while if we have that G(CP) = θ • I and G(PC) = 0 • I, then Ω is ’in-equitable’. Where

both G(PC) = % •I and G(CP) = θ •I holds simultaneously then Ω is simply an ’Equitable’

partition.

Since core network are directed ring-network, observe the examples as in fig. 5a as well

as a complete bi-directional core-network shown in fig. 6b. Also from the fig. 6 , observe

that all but fig. 5b are partitioned cores8 as each core-firm has same amount of incoming

and outgoing link in each case.

8For example, ρ = 1 for fig. 5a, ρ = 2 in fig. 6a while ρ = 3 in fig. 6b. Because G(CC) •1 = (2, 1, 1, 2)T

for fig. 5b, we are unable to define ρ in such case.
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1
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4

(a) Directed-Ring Core Network.

1

2

3

4

(b) Irregular Core Network.

1

2

3

4

(c) Bilateral-Ring Core Network.

1

2

3

4

(d) Complete Core Network.

Figure 4: Sample Core Networks. The figure a, c and d involve cores with fit the partition
criteria.

We begin with an added assumption which satisfies both the ring core-network, core net-

work with regular ring properties based on proposition 3 to show some realization in the

following statement below;

Proposition 4. Let G bi-directional graph of SCF which are core-periphery in nature as

in Ω = {Cr, Pr} and assumption 4 holds. In so far as ′a′ is within threshold, we have the

following Nash Equilibrium;

r∗Cr(G,Ω, a) = (1 + aρ− a2θ%)−1(πCr − aθπPr),

r∗Pr(G,Ω, a) = πPr − a% • r∗Cr(G,Ω, a),
(4.5)

Proof. See Appendix for proof.

This is such that if π = π • 1, each within a partition charges identical lending rates.

Observe further intuitions from this proposition,

Remark 4.1. If π = π • 1 and θ = %, the expression r∗Pr(G,Ω, a) > r∗Cr(G,Ω, a) always

holds true in so far ρ > 0.
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The remark above points to the fact that if a borrowing network meets the criteria for

core-periphery relationship where links between each periphery and its core are identical

and each firm lends same total amount, then one can presume core firms would charge a

lower lending rate as compared to the peripheries.

To discuss more on the condition that G(CC) • 1 = ρ • 1 in assumption 4, we illustrate

this in the examples below;

Example 1. Assuming the following networks with homogeneous links such that each

edge is weighted α ∈ ]0,R+[ below;

1

2

3
4

5

(a) Regular Core Network

1

2

3
4

5

(b) Irregular Core Network

Figure 5: Core Network with homogeneous links.

We have the sub-matrix of core interconnections as;

G1(CC) = α



0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0


, and G2(CC) = α



0 0 0 1 1

1 0 0 0 1

0 1 0 0 1

0 1 1 0 0

0 0 1 1 0



G1(CC) • 1|Cr| = G2(CC) • 1|Cr| = α(2, 2, 2, 2, 2)T

This implies that,

G1(CC)/Ω = G2(CC)/Ω = ρ = α • 2
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Example 2. Let us take another set of networks, this time with heterogeneous links as

follows;

1

2

3

4

0.8

0.
80.8

0.
4

0
.4

(a) Directed Core Network.

1

2

3

4

0.8

0.
80.4

0.
8

0
.4

(b) Directed Core Network.

Figure 6: Core Networks with heterogeneous links.

We have the sub-matrix of core interconnections as;

G1(CC) =


0 0 0.4 0.4

0.8 0 0 0

0 0.8 0 0

0 0 0.8 0

 , and G2(CC) =


0 0 0.4 0.8

0.8 0 0 0

0 0.8 0 0

0 0 0.4 0



G1(CC) • 1|Cr| = (0.8, 0.8, 0.8, 0.8)T ,

G2(CC) • 1|Cr| = (0.8, 0.8, 1.2, 0.4)T .

This implies that,

G1(CC)/Ω = ρ = 0.8

G2(CC)/Ω =??

As such the core network in fig. 6b does not satisfy the assumption 4.
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5 Intervention and Welfare Policies

In this section, we define outcomes based on Nash lending rates and then observe welfare

properties of the model. More precisely, we highlight various possible policy initiative to

which a maximising planner could adopt and its estimate the overall impact. To study

welfare, we adopt the standard utilitarian approach. As such, we introduce the following

definition;

Definition 6. The welfare from the game Γ(G, r, a) is defined specially for firms who

charge a positive amount as;

W (r,A, a)
def
=
∑
i∈A

Pi, (5.1)

This implies we use welfare is the aggregate payoff of all firms who charge a positive

amount. To define such payoff, we write the following lemma;

Lemma 2. Assume N and the game Γ(G, r, a), ∀ firm i ∈ A, payoff given Nash equilib-

rium is as follows;

PA = diag(B) •
(
(I + aG)−1 • πA

)
−K, (5.2)

where K =
(

2+a
4κa

)
∈ R|A|+ and B = (α • b−i)i∈A ∈ R|A|+ are both column vectors.

Proof. See Appendix for proof.

It is important to note the implication of (5.2). We see here that firms utility for

charging is mainly dependent on their individual Nash equilibrium rate. This means that

if we were to observe (5.2) and our best reply in (2.5) we then have an idea of kinds of

policy implications for the model which we explore in the coming sections.

5.1 Transaction Cost and Welfare Neutrality

In this part, we explore the possibility of intervention policies and their welfare impact.

Usually in payment systems, movement of a cash could face barriers such as foreign ex-

change conversion cost (if 2 firms are located at different economic regions), transaction

cost like bank charges, etc. If we assume a system where firms incur transaction cost on
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total payment which we denote as λ, let us have a case where a regulator decides to grant

λb−i to each i ∈ N , such policies are done so far as they keep the active set A the same

which means the network graph GA should remain unchanged, unchanged. Given λb−i for

all firm i ∈ N . The initial mark of the policy λ is such that payoff is written as;

P λ
i (ri) = λ

b−i • ri − ∑
j∈N ini

(ĝjibi) rj

− κ (λµi)
2 (5.3)

The diagram fig. 7 shows a planner P with a linear problem such that β(•) > c(•). More

specifically, the fig. 7a represents and instance where a planner increases payment made

by each firm to another (for example, through elimination of a prevailing transaction cost

like bank charges) while the fig. 7b shows a case where even without friction, the planner

grants each lender an extra amount to loan its potential debtors given strictly that debtors

are not opposed to such additional loans. The arrows show the policy action. In terms of

equilibrium, we introduce the following lemma;

Lemma 3. The active set A remains fixed ∀ λ ≶ 1 even though rλ = λ−1 • r.

Proof. For the Nash equilibrium given such policies, we have for all active firms that;

rλi =
πi
λ
− a

∑
j

λbji
λb−i

rλj =
πi
λ
− a

∑
j

bji
b−i

rλj . (5.4)

This is so that rewriting in vector form, our Nash for active firms is given as;

rλ = (I + aGA)−1 •
πA
λ

= λ−1 • r.

Given the Bonacich centrality element of Nash (I+aGA)−1 remains fixed in λ, we hold that

class of active firms given a substitute game A changes if and only if the proportionality of

π is altered. However, 1
λ
π ∝ π as such implying set of Active firms A are fixed for λ ≶ 1

since λ−1 is a constant.

Some explanation of this lemma is that since transaction cost λ is homogeneous and

since inactive firms are such that aGN−A×A • rλA ≥ πλN−A, then it means that while it

is that rλi∈A = λ−1ri, it is also the case that πλi∈N−A = λπi. So if because π rises and
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falls at equal magnitude for each firm, set of active firms remains constant. As such the

magnitude of transaction cost or intermediate intervention is not relevant in terms of what

the composition of active set would be at Nash equilibrium. In that light, we summarise

the effect of such homogeneous intervention policy as follows;

Proposition 5. Given the homogeneous policy λ, ∆W (rλ,A, a) = 0, hence welfare is

neutral.

Proof. See Appendix for proof.

i k

j l

P

λ−1b−i
λ
−

1b−
k

λ−1b−l

λ
−

1
b −

j λ
λ

λ

λ

(a) Intervention in a system with
existing frictions.

i k

j l

P

b−i

b−
k

b−l

b −
j

λ
λ

λ

λ

(b) Intervention in a system without
existing frictions.

Figure 7: Directions of a planner P ’s intervention to 4 firms

We then move to observe the impact of mutually exclusive policy λib−i ∀ i ∈ A such

that λi S λj for all i, j ∈ A. Observe here that policies are restricted to active set, we

assume strictly that such policy intervention is such that leaves active set unchanged.

For simplicity, one can initially assume the policy λi is applied to a single firm while

holding others fixed as shown in fig. 8 where this time a regulator increases only one firms

borrowing . In practice, it could be through eliminating transaction cost for a single firm

while leaving other constant as shown in the figure below;
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i k

j l

P

b−i

b−
k

b−l

b −
j

λ
i

Figure 8: Ring network with 4 firms where a regulator decides to increase total firm i’s lending
to λib−i.

More broadly, the concept of the policy is that links of firms could be increased at

heterogeneous proportion. The impact of such policy on welfare goes as follows;

Theorem 1. Given a policy (λi, λj, . . .) so that λi S λj for all i, j ∈ A we have the

following outcome;

∆W λ(rλ,A, a) = 0 (5.5)

Hence such policy is welfare neutral.

Proof. See Appendix for proof.

This means that it is not possible for a regulator to improve the welfare of active

players by simply increasing/reducing one or more active firm network intensity even if it

is by varying amounts. Welfare Neutral policies are also found in major public literature

such as Bergstrom et al. (1986) and Warr (1983) who both showed neutrality to aggregate

provision of public good and individual consumption of private good in so far as wealth

redistribution does not change the set of active players involved. In an extension to this,

Allouch (2015) adds that small transfers that leave active set the same are also neutral

only when such transfers are made between the active set themselves. To contrast with our

results yield neutrality without transfer policies. Because each firms utility is based on their

individual Nash equilibrium, payoffs are neutral which leaves overall welfare unchanged.

Additionally, intervention are not be restricted to active firms and due to the homogeneous

nature of intervention, the magnitude of λ is pertinent in influencing the outcome in so

far rates charged by creditor firms are limited to non-negative rates.
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5.2 Resource Allocation

To access a possible impact of theorem 1, we observe a policy change of ∆ κi for i ∈ A

(i.e, firms who charge at Nash equilibrium ). Let us have the following definition;

Definition 7. For any firm i ∈ N , we have it that

• Subsidy ⇒ ∆κi
κi

= γ−i

• Tax burden ⇒ ∆κi
κi

= γ+
i

Assume then that γi = γ ∀ firm i ∈ A so that the policy is applied in homogeneous

proportion to all active firms. Payoff of each firm i is written as;

∀ i ∈ N P γ
i (ri) = b−i • ri −

∑
j∈N ini

(ĝjibi) rj − (1 + γ)κ(µi)
2 (5.6)

We summarise the effect in the following results;

Lemma 4. Given γ, welfare differential is as follows;

∆W γ(rγ,A, a) = 1TPA •
−γ

(1 + γ)
. (5.7)

Remark 5.1. This implies that if γ ∈ [−1, 0[, then ∆W γ(rγ,A, a) > 0 while if γ ∈ [0, 1[

then ∆W γ(rγ,A, a) < 0 and its interpretation is simply that subsidies improves welfare

while taxes reduce welfare.

Note that Active firms A also remains fixed ∀ γ ∈ ]0, 1[. Results in this case are

clearly unsurprising as lighter burden means firms are less sensitive to the volume of

indebtedness given its fixed debt. Examples of such policies could be through providing

outsourcing facility to a portion of debts or maybe policies to reduce call rates or providing

free training of labour force involved in such area. When however, this policy applies in

a heterogeneous manner to firms, it then becomes isomorphic to resource transfers which

we explore in details subsequently.

In lemma 3 as well as theorem 1, it is noted that given a policy λi ≶ 1 such that lending

becomes λib−1 for any i ∈ A, ∆W (G, a) = 0 in so far as the active firms A remains fixed.

Given our results above, we have the following results;
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Proposition 6. Given the game Γ(G,A, a) there exists ∆W (r,A, γ, λ) ∈ ]0,R++[ (not

necessarily Pareto) at zero cost to a planner in so far as there exists
∑

i∈A λib−i such that

A remains fixed.

Proof. Strictly holding A fixed, let
∑

i∈A(1− λi)b−1 be the amount the regulator charges

for intermediate payments from each firm i (building from proposition 5) , then this is the

case so far
∑

i∈A(1−λi)b−1 = γ
∑

i∈A (κi(µi)
2) which then guarantees Pareto improvement

among active firms. For non-Pareto improvement, subsidised administrative cost γiκi(•)
2

need not apply to all firms in A. In this case, the criteria shown in theorem 2 becomes

useful.

This comes form the fact that so far as active set remains fixed, the regulator can

instead of eliminating transaction cost, create one at no cost to overall welfare. This also

grants resources to subsidise one or more firms in a way that improves welfare. Pareto

improvement is possible if X =
∑

i∈A(1 − λi)b−1 is split such that γ
∑

i∈A κi(µi)
2 ≤ X.

Observe now that γ is constant so that its effect on welfare corresponds to lemma 4. This is

a unique form of transfer compared to those found in mainstream public good in networks

literature such as Allouch (2015), Allouch and King (2018b), etc. This is because in this

case, transfers could be simply from one firm to another through different variables the

firm faces.

6 Intervention Targeting

We project in this section the relationship between Bonacich externality measures and

firms quality, especially in terms of marginal welfare given a resource constrained planner.

We here generalise the Planner to one who wishes to grant loan management cost subsidy

in order to maximise overall welfare (∆W γ(rγ,A, a))max of active firms A . Then if the

set Φ(A) represents the possible combinations of firms, the planner has |Φ(A)| = 2|A| − 1

amount of alternative actions as to the distribution of subsidy intervention in order to

achieve (∆W γ(rγ,A, a))max. This is such that the eariler discussed ”γ ∀ firm i ∈ A” is a

strategy element in Φ(A) arising from the C(|A|, |A|) combination, where C(a, b) = a!
(a−b)!b! .

On the other extreme, let φ ⊂ Φ be the subset arising the combination C(|A|, 1), This then
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means that |φ| = |A| such that the Planner calculates the total welfare from subsidising

for a single firm i ∈ A. We then wish to show the qualities of the firm i ∈ A which

yields the greatest payoff from the strategy subset φ. Literature in recent times have,

within network spillover problems come up with various targeting criterion; The Key-

Player concept introduced in Ballester et al. (2006), The highest threat index (which

is the Bonacich centrality) introduced in Demange (2016) as well as the top Principal

Components as another eigenvalue related measure used in Galeotti et al. (2020).

We begin with a naive scenario. Assume a planner with unlimited finance but one

who wishes to subsidise administrative cost by a γ% for a single selected firm so as to

maximise overall network welfare. Formally, we define the planners problem within the

strategy φ ⊂ Φ is stated as;

max
γ
{P γ

i − Pi|i = 1, . . . , n} s.t γ− = γi|i ∈ {A}. (6.1)

The choice firm i ∈ A then has a payoff is written as;

P γ
i (ri) =

b−i • ri − ∑
j∈N ini

(ĝjibi) rj

− (1 + γ)κ(µi)
2 (6.2)

i k

j l
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γ j?

γ
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Figure 9: Ring network with 4 firms to which the planner makes a decision which to subsidise.

Hence the question is which firm should the planner subsidise for? Observe the following

equation of the measure of a firm i ∈ N ;9

9We still hold in this part that N = A.
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βi(G
T ,−a)

def
=

+∞∑
k=0

(−a)k
n∑
j=1

((
GT
)k)

ij
(6.3)

This is such that b(GT ,−a) = (I + aGT )−1 • 1 =
(
βi(G

T ,−a)
)
i∈N ∈ Rn

+. The measure

above is related to the Bonacich centrality used to capture prestige and network influence

as proposed by Bonacich (1987). However, it measures the weakness of firms link to its

debtors. This means that the greater βi(G
T ,−a) is for a firm i, the smaller the weight of

the direct link to N out
i . Going further, βi(G

T ,−a) is referred to as the externality index

for firm i. We as such present the following results.

Theorem 2. Assume that b−i = b−j ∀ i, j ∈ A. The welfare differential ∆W (rγ,A) is at

maximum if and only if subsidy γi such that for firm i ;

βi(G
T
A,−a) ≥ βj 6=i(G

T
A,−a),

Hence firm i has the largest externality index.

Proof. See Appendix for proof.

This result shows the relationship between externalities on outgoing links based on

weighted interconnections and ability to improve overall welfare overall from intervention

related to subsidy. To summarise this point, recall that we can also write firm i’s centrality

measure as below,

βi(G
T
A,−a) = 1− a

∑
j∈N outi

gijβj(G
T
A,−a). (6.4)

This means that for every unit increase in πi, it negatively impacts each rj∈{N outi ∩A}.

Thus a negative externality. Then given that lending rates charged by active firm serve as

a form on negative externality, the subsidy should be given to the firm who produces the

least externality in the network. This is as subsidy here increases strategic substitution

since it increases the potential ri for any firm whose κ(µi)
2 is reduced. This serves as an

identifier for pressure points of our model in contrast to other network targeting works.

A more practical and justifiable scenario would be where the planner has limited re-

source. In this instance, the planner wishes to maximise total welfare and as such, measures
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the impact of channeling subsidy to a single firm versus splitting proportionally across all

active firms. In order to select the firm to consider allocating resource to, let us rewrite

the problem of the planner from (6.1) as follows;

max
γi|i∈A

{P γi
i − Pi|i = 1, . . . , n} , (6.5)

s.t γi = γi|i ∈ {A} and,

γi • κi(µi)
2 ≤ X

It follows then that γi ≤ − X
κi(µi)2

where X represents the cash endowment of the

regulator. In this case, we then derive another corollary from theorem 2 as,

Corollary 2. Assuming a regulator who is cash constrained and b−i = b−j ∀ i, j ∈ A, the

welfare differential ∆W γi(rγi ,A, a)|i ∈ A is at maximum if and only if subsidy γ is applied

to firm i which meets the following criteria,

βi(G
T
A,−a) •

−γi
1 + γi

≥ βj 6=i(G
T
A,−a) •

−γj
1 + γj

.

Proof. Since γi is not necessarily homogeneous across firms, then ∀ firm i such that Pi =

. . .+(1+γi)•κ(µi)
2, ∆W (rγ,A, a) = −γiα

2κ(1+γi)
•βi(G

T
A,−a)+ ηγi

1+γi
= γi

1+γi

(
η − α

2κ
• βi(G

T
A,−a)

)
and we also hold that γi

1+γi
→ +∞ as γi → −1 while keeping active set A strictly fixed.

The intuition then from our results is that welfare due to individual subsidy especially

when the regulator has limited funds are best allocated to firms with a combination of

greater proportional reduction in loan management expenses as well as lower negative

spillover effects. An example of the planner making this decision can be observed below;

Example 3 (Individual vs Group Targeting). Assuming the following debt network below;
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Figure 10: Network with 3 firms and 4 debt contracts (edges)

Other parameters are as follows, a = 0.8, κ = 0.04. This means we have π =

(0.699, 0.46)T and

G =

 0 0.67

0.37 0

 .
So that r∗ = (0.54, 0.3)T , b(GT ,−a) = (0.8368, 0.5515)T and P = (19.198, 15.553)T .

Which leaves the initial welfare 1TP = 34.751.

Assume then that a planner has $2 to distribute. First we have the loan management

cost as;

κ(µi(r
∗))2 = 6.35 and,

κ(µj(r
∗))2 = 6.17.

We have Φ = {φ1, φ2, φ3} where φ1 = {i, j}, φ2 = {i} and φ3 = {j}.

For the strategy φ1, γi = γj = γ. This gives the value as γ = −0.1587. Strategy φ2

gives γi = −0.3149 while Strategy φ3 gives γj = −0.324.

Strategy 1(φ1): Where γ = −0.1587.

We have the welfare improvement then as;

∆W γ(rγ,A, a) = 1TPA •
−γ

(1 + γ)
,

= 34.751 •
0.1587

0.8413
,

= 6.56.

Strategy 2(φ2): Where γi = −0.3149.
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Let η = 2+a
4a

and α = a+1
a

. The welfare improvement is;

∆W γ(γi,A, a) =
−γiα

2κ(1 + γi)
• βi(G

T
A,−a) +

ηγi
1 + γi

,

=
0.7085

0.0548
• (0.8368)− 0.2755

0.6851
,

= 10.41.

Strategy 3(φ3): Where γj = −0.324.

The welfare improvement is;

∆W γ(γj,A, a) =
−γjα

2κ(1 + γj)
• βj(G

T
A,−a) +

ηγj
1 + γj

,

=
0.729

0.0508
• (0.5515)− 0.2835

0.6760
,

= 7.4928.

Here, we see that the optimal intervention would be to spend the $2 on subsidising firm

i’s loan management cost which in itself, gives a total welfare improvement that supersedes

splitting proportionately among both active firms. Also noticeable, is the fact that firm i

has a greater externality index βi(G
T
A,−a) in comparison to firm j which corresponds to

our results. On a final note, it is worth pointing out that the sub-strategy combination

C(|A|, b), where 1 < b < |A|, strategies are known as group strategy. This is even more

distinct when the number of active firms exceeds 2 (|A| > 2). Our analysis still implies the

planner weighs these strategy and indeed, the optimal could be found within such strategy.

However, we have focused primarily on individual firms quality which makes it a suitable

target. Group based intervention remain unexplored but relevant.

7 Concluding Remarks

We have shown strategic substituting behaviour of firms arising from firms making an

inter-temporal lending rate decision so as to make maximum profit in the face of Loan

management cost. Such Loan management cost depends on the level of firms efficiency in

managing overall debtors as well as creditors. The outcome of this is a substitute game
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with mostly a unique equilibrium. Our best replies are very likened to notable works

such as Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011), Allouch (2015) as well as

Bramoullé et al. (2014) without boundaries and Allouch and King (2018a) with boundaries

but with slightly different weight and directional properties. We identify neutrality and

welfare improving policies given various types of intervention. The main intuition from out

model is that transfers can be made in different forms within a firms property such that

the planner improves welfare at little to no additional cost. Lastly, we established that

interventions targeted at firms who have a relatively higher degree of network centrality

based on weak link to debtors yields the most efficient welfare based outcomes. This is

because then, raising such firms lending rate yields lower negative spillover to debtor firms.

This work primarily pays more attention to cost coming from loan management and

as such gives intuition towards strategic substitute under the assumption that the firm

incurs additional cost on the basis of additional volume of loans. A possible critique of

this idea would be that to a significant degree, the number of debtors and creditors are also

key drivers of loan management cost as well and we out model fails to capture such part.

One reason for ignoring this is that it would mean that firms then make decision as to

how many incoming and outgoing link to establish, which goes against our fixed network

environment as we assume that such decision are made exogenous to the model, hence

the network environment we have . As with regards to decisions on lending rates, given

that there are host of other factors that might influence a lending rate charged, then it is

easily predicted that other forms of interaction including games of complementarity could

arise if the focus is on other factors. Also, because we assume a one-shot decision making,

we ignore instances where firms could work to increase administrative efficiency. This in

itself could lead to new problems including moral hazard (for example, a personnel might

not reveal his/her true efficiency as it might alter remuneration). We believe this would

make for a vital extension to the model. Another line of extension would be to factor in

a welfare whereby the planner weights firms by order of importance such that payoffs are

given weights. This could also shed a more realistic lights to impacts of policies to firms.
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A Proofs

A.1 Proof of Lemma 1

Intuitions on this concept is briefly discussed in (Bramoullé et al., 2014). Additionally, it

should be noted that because G is a directed graph, then (I + aG) being positive definite

implies

1 + a φmin

(
G + GT

2

)
> 0, (A.1)

hence the condition. �

A.2 Proof of Proposition 2

Given (2.8), then for the active set A, we would have for firm i ∈ A the following;

ri∈A = πi − a
∑

j∈N ini ,j∈A

bji
b−i

rj. (A.2)

Intuitively, any firm l ∈ N −A would be such that the following holds;

rl∈N−A = πl − a
∑

j∈N inl ,j∈A

bjl
b−l

rj ≤ 0,

Which then translates to;

a
∑

j∈N inl ,j∈A

bjl
b−l

rj ≥ πl. (A.3)

Writing (A.2) and (A.3) in vector form for the full set N completes the proof. �

A.3 Proof of Proposition 3

Holding N = A, since our Nash equilibrium is r(G, a) = (I + aG)−1 •π, we then solve for

r(G, a) below as follows;

r(G,Ω, a) =

(I + aG(CC)) aG(CP)

aG(PC) I

−1

•

πCr
πPr

 (A.4)
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Using block matrix inversion concept to solve for

(I + aG(CC)) aG(CP)

aG(PC) I

, assume

without loss of generality that (I + aG(CC)) = A, aG(CP) = F while aG(PC) = E so

that (I + aG(CC)) aG(CP)

aG(PC) I

 =

A F

E I

 .
From the Helmert-Wolf blocking inversion method,10 we have the following;

A F

E I

−1

=

A−1 + A−1F (I− EA−1F )−1EA−1 −A−1F (I− EA−1F )−1

−(I− EA−1F )−1EA−1 (I− EA−1F )−1


This is so that we have ⇒A F

E I

−1

•

πCr
πPr

 =

(A−1 + A−1F (I− EA−1F )−1EA−1)πCr − (A−1F (I− EA−1F )−1)πPr

− ((I− EA−1F )−1EA−1)πCr ((I− EA−1F )−1)πPr


=

A−1πCr − A−1F (I− EA−1F )−1(πPr − EA−1πCr)

(I− EA−1F )−1(πPr − EA−1πCr)



We then focus on the first line for which we have the following expression ⇒

10See Wolf (1978).
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A−1πCr − A−1F (I− EA−1F )−1(πPr − EA−1πCr) = A−1(I− EA−1F )−1(I− EA−1F )πCr

− A−1F (I− EA−1F )−1(πPr − EA−1πCr)

= A−1(I− EA−1F )−1πCr

− A−1(I− EA−1F )−1EA−1FπCr

− A−1F (I− EA−1F )−1πPr

+ A−1F (I− EA−1F )−1EA−1πCr

= A−1(I− EA−1F )−1πCr

− A−1F (I− EA−1F )−1πPr

= A−1(I− EA−1F )−1(πCr − FπPr)

r∗Cr(G,Ω, a) = A−1(I− EA−1F )−1(πCr − FπPr)

r∗Pr(G,Ω, a) = (I− EA−1F )−1(πPr − EA−1πCr).

Since F = aG(CP), E = aG(PC), and (I+aG(CC)) = A we then have the following;

r∗Cr(G,Ω, a) = (I + aG(CC))−1
(
I− aG(PC)(I + aG(CC))−1aG(CP)

)−1
(πCr − aG(CP)πPr),

r∗Pr(G,Ω, a) =
(
I− aG(PC)(I + aG(CC))−1aG(CP)

)−1
(πPr − aG(PC)(I + aG(CC))−1πCr).

Since for a matrix Z, (I− θ • I) • Z = (1− θ) • Z, we then have the following;

r∗Cr(G,Ω, a) = (I + aG(CC))−1
(
I− a2θ%(I + aG(CC))−1

)−1
(πCr − aθπPr),

=
(
(I + aG(CC))

(
I− a2θ%(I + aG(CC))−1

))−1
(πCr − aθπPr),

=
(
I + aG(CC)− a2θ% • I

)−1
(πCr − aθπPr),

=
(
(1− a2θ%) • I + aG(CC)

)−1
(πCr − aθπPr),

=

(
I +

a

1− a2θ%
G(CC)

)−1
(πCr − aθπPr)

1− a2θ%
.
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r∗Pr(G,Ω, a) =
(
I− a2θ%(I + aG(CC))−1

)−1
(πPr − a%(I + aG(CC))−1πCr),

=
(
(I + aG(CC))−1

(
I + aG(CC)− a2θ% • I

))−1
πPr

− a%
((

I− a2θ%(I + aG(CC))−1
)

(I + aG(CC))
)−1

πCr,

= (I + aG(CC))
(
I + aG(CC)− a2θ% • I

)−1
πPr

− a%
(
I + aG(CC)− a2θ% • I

)−1
πCr,

=
(
I + aG(CC)− a2θ% • I

)−1
((I + aG(CC))πPr − a% • πCr)

=
(
(1− a2θ%) • I + aG(CC)

)−1
((I + aG(CC))πPr − a% • πCr)

=
(
(1− a2θ%) • I + aG(CC)

)−1
(aG(CC)πPr + πPr − a% • πCr)

=
(
(1− a2θ%) • I + aG(CC)

)−1((
(1− a2θ%) • I + aG(CC)

)
πPr − (1− a2θ%) • πPr + πPr − a% • πCr

)
=
(
(1− a2θ%) • I + aG(CC)

)−1
(a2θ% • πPr − a% • πCr)

+ ((1− a2θ%) • I + aG(CC)−1
(
(1− a2θ%) • I + aG(CC)

)
πPr

= πPr +
(
(1− a2θ%) • I + aG(CC)

)−1
(a%(aθ • πPr − πCr))

= πPr − a% •
(

I +
a

1− a2θ%
G(CC)

)−1
πCr − aθ • πPr

1− a2θ%
.

�

Proof of Proposition 4

From proposition 3, recall we have the vector of Bonacich centrality grouped in Core and

Periphery vector as follows;

rCr(G,Ω, a) =

(
I +

a

1− a2θ%
G(CC)

)−1
(πCr − aθπPr)

1− a2θ%
, (A.5)

as well as,

rPr(G,Ω, a) = πPr −
(

I +
a

1− a2θ%
G(CC)

)−1
(πCr − aθπPr)

1− a2θ%
(A.6)
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Given the assumption that G(CC) •1 = ρ •1 , then such regularity means that we have

the following Bonacich centrality based Nash equilibrium vectors;

rCr(G,Ω, a) =

(
1 +

aρ

1− a2θ%

)−1
(πCr − aθπPr)

1− a2θ%
,

=

(
1− a2θ%

1− a2θ%+ aρ

)
(πCr − aθπPr)

1− a2θ%
,

= (1 + aρ− a2θ%)−1(πCr − aθπPr).

Then for the Periphery set we have;

rPr(G,Ω, a) = πPr − a%(1 + aρ− a2θ%)−1(πCr − aθπPr)

�

A.4 Proof of Lemma 2

Recall that ĝji =
bji
bi

.

Assume N = A. This means we can rewrite (2.4) as follows

Pi = b−iri −
∑
j∈N ini

bjirj − κ • (µi)
2 (A.7)

Also, from (2.8),

ri = πi − a
∑
j∈N ini

bji
b−i

rj

yielding;

b−iπi = b−iri + a
∑
j∈N ini

bjirj (A.8)

Also from (A.8), ∑
j∈N ini

bjirj =
b−iπi − b−iri

a
(A.9)

then substituting (A.8) and (A.9) in (A.7) yields;

Pi = b−iri −
b−iπi + b−iri

a
− κ • (µi)

2
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which is also;

Pi = b−iri
(a+ 1)

a
− b−iπi

a
− κ • (b−iπi)

2

Given that we have πi = 1
2κb−i

, we then have our payoff as ;

Pi∈A =
b−i(a+ 1)

a
ri −

2 + a

4κa
. (A.10)

Let α = (a+1)
a

and η = 2+a
4κa

, given (4), we have the expression with respect to firm i ∈ A

Bonacich centrality as;

Pi∈A = αb−i
(
(I + aG)−1 • πA

)
i
− η (A.11)

In vector for, this becomes;

PA = diag(B) •
(
(I + aG)−1 • πA

)
−K

such that K = [η]A×1 and B = [α • b−i]
A×1. �

A.5 Proof of Proposition 5

So we have that given λ = (1 + ε), we have P ε
i (ri) = λ

(
b−i • ri −

∑
j∈N ini

(ĝjibi) rj

)
−

κ (λµi)
2 + Ψri. If we were to take the differential with respect to ri; we end up with the

best reply as follows;

ri(λ) =
πi
λ
− a

∑
j

λbji
λb−i

rj =
πi
λ
− a

∑
j

bji
b−i

rj.

This is so that rewriting in vector form, our Nash for active firms is given as;

r(λ) = (I + aGA)−1 •
πA
λ
.

We can simply deduce from (5.3) that the vector payoff for active firms is as follows;

Pλ
A = λdiag(B) •

(
(I + aGA)−1 •

πA
λ

)
−K = PA

38



This is because granting εb−i to each firm − i ∈ N yields equation (1) and (6). Hence

payoff is homogeneous of degree zero, i.e Pλ
A(λb−i) = PA(b−i). As such, welfare differential

W (r∗,A)−W λ(rλ,A) = 1T (PA −Pλ
A) = 0.

�

A.6 Proof of Theorem 1

Assume the planner decides to change a firm i’s total lending by a parameter λ and let us

have it that the policy intervention λi such that payoffs is written as;

P λ
i (ri) = λib−i • ri −

∑
j∈N ini

(ĝjibi) rj − k

λib−i • ri + a
∑
j∈N ini

(ĝjibi) rj

2

(A.12)

The addition of λbi to firm i is strictly conditional on the following;

1. A(λ) = A, and

2. a ∈
]
0, 1∣∣∣G(λ)+G(λ)T

2

∣∣∣
[
.

The Nash equilibrium for firm i given λb−i is ;

rλi =
πi
λi
− a

∑
j∈N ini ,j∈A

gji
λi
rλj

While the equilibrium for all firm j|j ∈ N out
i ∩ A is

rλj = πj − a
∑

k∈(N ink −{i})∩A

gkjr
λ
k − aλigijrλi

The vector payoff for active firms is then;

Pλ
A = diag(Bλ) •

(
(I + aGλ

A)−1 • πλA
)
−K

39



where Bλ = (αλibi, αbj, αbk, . . .)
T , πλ =

(
λ−1
i πi, πj, πk . . .

)T
and lastly,

Gλ
A =


0

gji
λi

. . . gni
λi

λigij . . . . . . gji
...

...
...

...

λigin gnj . . . 0


We then show that diag(Bλ) •

(
(I + aGλ

A)−1 • πλA
)

= diag(B) • ((I + aGA)−1 • πA). First

we have that

diag(Bλ)•
(
(I + aGλ

A)−1 • πλA
)

=


αλibi 0 . . . 0

0 . . . . . . 0
...

...
...

...

0 0 . . . αbn

×


mii
mji
λi

. . . mni
λi

mij ∗ λi . . . . . . mni

...
...

...
...

min ∗ λi mnj . . . mnn

×

πi
λi

πj
...

πn


This is then the same as;

diag(Bλ) •
(
(I + aGλ

A)−1 • πλA
)

=


αλib−i 0 . . . 0

0 . . . . . . 0
...

...
...

...

0 0 . . . αb−n

×


1
λi

(miiπi +mjiπj + . . .+mniπn)

mijπi + . . .+ . . .+mniπn
...

minπi +mnjπj + . . .+mnnπn



=


αbi (miiπi +mjiπj + . . .+mniπn)

αbj (mijπi + . . .+ . . .+mniπn)
...

αbn (minπi +mnjπj + . . .+mnnπn)


= diag(B) •

(
(I + aGA)−1 • πA

)
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Say then we have λi 6= λj 6= . . . 6= λn, we have our Nash equilibrium as;

(I+aGλ
A)−1•πλA =


mii

mji∗λj
λi

. . . mni∗λn
λi

mij∗λi
λj

. . . . . . mni∗λn
λj

...
...

...
...

min∗λi
λn

mnj∗λj
λn

. . . mnn

×

πi
λi
πj
λj
...

πn
λn

 =


1
λi

(miiπi +mjiπj + . . .+mniπn)

1
λj

(mijπi + . . .+ . . .+mniπn)
...

1
λj

(minπi +mnjπj + . . .+mnnπn)


Which when multiplied by diag(Bψ) still yields the same expression that

diag(Bλ) •
(
(I + aGλ

A)−1 • πλA
)

= diag(B) •
(
(I + aGA)−1 • πA

)
.

�

A.7 Proof of Lemma 4

then best replies are ;

rγi =
πi

(1 + γ)
− a

∑
j∈N ini ,j∈A

gjir
γ
j

While the vector payoff for active firms is then;

Pγ
A = diag(B) •

(
(I + aGA)−1 •

πA
(1 + γ)

)
− K

(1 + γ)
=

1

(1 + γ)
• PA

as such, welfare differential

W γ(rγ,A)−W (r∗,A) = 1TPA •
γ

(1 + γ)

�

Proof of Theorem 2

The best replies for the firm i which is subsidised for is ;

rγi =
πi

(1 + γ)
− a

∑
j∈N ini ,j∈A

gjir
γ
j
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While the vector payoff for active firms is then;

Pγ
A = diag(B) •

(
(I + aGA)−1 • πγA

)
−Kγ

Where πγA =
(

πi
1+γ

, πj, . . .
)T

, while Kγ =
(

η
1+γ

, η, . . .
)T

. As such, payoff vector differen-

tial;

Pγ(rγ,A)−P(r∗,A) = diag(B) •
(
(I + aGA)−1 • (πγA − πA)

)
− (Kγ +K) (A.13)

Where πγA − πA =
(
πiγ
1+γ

, 0, . . . , 0
)T

, while Kγ −K =
(

ηγ
1+γ

, 0, . . . , 0
)T

We can then

expand (A.13) as such;

Pγ(rγ,A)−P(r,A) =


αb−i 0 . . . 0

0 . . . . . . 0
...

...
...

...

0 0 . . . αb−n

 • (I + aGA)−1 •


− πiγ

1+γ

0
...

0

−

− ηγ

1+γ

0
...

0



=


αb−i 0 . . . 0

0 . . . . . . 0
...

...
...

...

0 0 . . . αb−n

 •


−mii

πiγ
1+γ

−mij
πiγ
1+γ

...

−mik
πiγ
1+γ

−

− ηγ

1+γ

0
...

0



=


−miiα

b−iπiγ
1+γ

−mijα
b−jπiγ

1+γ
...

−mikα
b−nπiγ

1+γ

−

− ηγ

1+γ

0
...

0



This then means that since πi = 1
2κb−i

, we have;

∆W (rγ,A|i) =
−γα

2κ(1 + γ)

(
mii +mij

b−j
b−i

+ . . .+min
b−n
b−i

)
+

ηγ

1 + γ
(A.14)
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This means that if b−i = b−j ∀ i, j ∈ A, then we have that the equation above becomes;

∆W (rγ,A|i) =
−γα

2κ(1 + γ)
(mii +mij + . . .+min) +

ηγ

1 + γ

=
−γα

2κ(1 + γ)
• βi(G

T
A,−a) +

ηγ

1 + γ

> 0 in so far γ < 0.

(A.15)

Observe also that −γα
2κ(1+γ)

as well as ηγ
1+γ

is common to every active firm. This means that

the firm i such that βi(G
T
A,−a) is greatest achieves the highest value of ∆W (rγ,A|i).

�

B Supplementary Information: Computation of Nash

Equilibrium

B.1 Basic Algorithm

For this part, we use the following boundary limit for actions such that we have

∀ i ∈ N ri ∈ [0, πi] and π ≤ 1. (B.1)

So then assuming we have the system given as follows;

rA = (I + aGA,A)−1 · πA (B.2)

rN−A = 0 (B.3)

We then have the clearing condition from (B.2) and (B.3) as follows;

rA ≥ 0 (B.4)

aGN−A,A · rA ≥ πN−A (B.5)

We then have the sequence as follows;
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1. Assume an initial A(0) ⊂ N such that |I + aGA,A| 6= 0 (which always holds true ∀

A(k) given boundary conditions as in lemma 1).11

2. Then using A(0) and N −A(0), solve for (B.2) keeping (B.3) as defined.

3. Then check if the conditions meet the requirement of both (B.4) and (B.5).

4. If (B.4) and (B.5) are satisfied given A(0), End.

5. Otherwise, select another subset A(1) ⊂ N .

6. repeat step 2 to step 4 until step 4 is satisfied.

7. END!!!

B.2 Pseudo-Code for Computation

In this part we rewrite the algorithm from the previous subsection in a form that is easily

adapted into codes. We have the algorithm then written as follows;

Algorithm 1 Nash Equilibrium Lending rate Rate Algorithm

1: procedure Define Parameters

2: A(k) ⊂ N , N −A(k) ⊂ N , N −A(k) ∩ A(k) = {}, N −A(k) ∪ A(k) = N .

3: maxk = 2|N | − 1 (loop)

4: loop:

5: if k = 1 : 1 : maxk then

6: rA(k) = (I + aGA(k),A(k))
−1 · πA(k).

7: rN−A(k) = 0.

8: End If :

9: rA(k) ≥ 0 and,

10: aGN−A(k),A(k) · rA(k) ≥ πN−A(k).

11: Else:

12: goto loop.

11Note that k = 2|N | − 1 from the maximum subset combination of N
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