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Abstract

We study many-to-one matching markets in a dynamic framework with the following
features: Matching is irreversible, participants exogenously join the market over time, each
agent is restricted by a quota, and agents are perfectly patient. A form of strategic behavior
in suchmarkets emerges: The sidewithmany slots canmanipulate the subsequentmatching
market in their favor via earlier matchings. In such a setting, a natural question arises: Can
we analyze a dynamic many-to-one matching market as if it were either a static many-to-one
or a dynamic one-to-one market? First, we provide sufficient conditions under which the
answer is yes. Second, we show that if these conditions are not met, then the earlymatchings
are “inferior” to the subsequent matchings. Lastly, we extend the model to allow agents on
one side to endogenously decidewhen to join themarket. Using this extension, we provide a
rationale for the small amount of unraveling observed in the USmedical residencymatching
market compared to the US college-admissions system.
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1 Introduction

Matching hasmany-real life applications such as college admissions and labormarkets. Inmany
environments, all agents do not arrive to themarket at the same time. For example, most upper-
tier colleges in the US have two admission periods, early and regular.1 Likewise, unemployed
workers and job openings become available at different periods in many labor markets.2 There-
fore, many matching processes are inherently dynamic, with participants arriving and being
matched over time.

Numerous two-sided matching environments aremany-to-onematching markets —multiple
agents on one side can be matched with one agent on the other side. The prominent exam-
ples are college admissions, school choice, and entry-level professional labor markets such as
medical residency matching.3

Researchers have studieddynamic one-to-onematching environments: Doval (2019), Kadam
& Kotowski (2018), Kurino (2009), Baccara et al. (2016), and so on. This paper is the first to
analyze dynamic many-to-one matching markets with irreversible matches. A dynamic many-
to-one matching environment differs from a dynamic one-to-one matching environment in an
important way. Intuitively, once a match is formed in a dynamic one-to-one matching environ-
ment, all parties concerned put no weight on the subsequent matches that form in later periods.
This is not necessarily true in a dynamicmany-to-onematching environment, because the agents
on the side with many slots might join the subsequent matching market even if they form some
matches in earlier periods.

For exposition, we use the language of the college-admissions problem throughout the pa-
per, and consider two periods: colleges arrive at the market in the first period, whereas the
students exogenously arrive over time. Each college has a quota that is to be filled over two
periods. Matches formed in the first period cannot be broken in the second period. Agents un-
matched in the first period join the second-periodmatchingmarket. Each agent only cares about
her “ultimate” match. Thus, no per-period payoff exists. For simplicity, we assume everyone is
perfectly patient, although the results extend to a small amount of discounting.

In such a setting, two natural questions arise. First, do situations exits in which one can
analyze a dynamicmany-to-one matching market as if it were a staticmatching market? Second,
do situations exist inwhich one can analyze a dynamicmany-to-onematchingmarket as if it were

1Twenty percent of respondents to NACAC’s 2016 Admission Trends Survey offered early decision(ED). Six
percent of all applications for Fall 2016 admission to colleges were received through ED. Between Fall 2015 and
Fall 2016, colleges reported an average increase of 5% in the number of ED applicants and 6% in ED admits.

2A similar trend is observable in finance and economics job markets for new doctorates. See Coles et al. (2010)
and Volkov et al. (2016)

3Other examples are Federal court clerkships in the US, and job markets for new doctorates in many majors
such as economics, finance, and marketing.
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a dynamic one-to-onematchingmarket? We study dynamicmany-to-onematchingmarkets, and
as part of the analysis, answer these questions.

The paper has three main results. First, we provide conditions under which a dynamic
many-to-onematchingmarket can be simplified to either a staticmany-to-one or a dynamic one-
to-one market. One naturally questions what to expect if these conditions are not met. Thus, as
a second result, we provide a property of dynamic many-to-one matching markets that cannot
be simplified to either a static many-to-one or a dynamic one-to-one market. Finally, we re-
lax the assumption of exogenous arrivals, and examine the unraveling incentives under deferred
acceptance, which is a stable matching algorithm in static settings.

Answering the first question is important because if the answer is yes, we can extend many
known properties of a static many-to-one matching market to a dynamic setting. Moreover, we
can identify situations where dynamics do not play any role.

To motivate the analysis of the second question, note that many-to-one matching markets
are generally not equivalent to one-to-one markets. However, for an important class of prefer-
ences—responsive preferences—the answer is yes for static settings. An example of this class is
colleges that only have preferences that are increasing in students’ scores. In static settings with
responsive preferences, one can think of a college with n slots as n separate colleges with only
one slot. One might wonder whether the same feature holds for the dynamic environment. If it
does, one can simply use a dynamic one-to-one matching market as a tool to analyze a dynamic
many-to-one matching market, just as in the static settings.

The novel insight in dynamic many-to-one matching markets is that a college might want
to fill some of its restricted quota during early admissions to manipulate the outcome of the
regular admissions. In particular, colleges might find it profitable to sacrifice some seats and
accept some lower-ranked students early to be able to enroll a higher-ranked student later on.4

We call such behavior “strategic manipulation via commitment.”
We show the answer to both questions is yes as long as preferences rule out the incentives

for strategic manipulation via commitment.
Initially, we define a new notion of dynamic group stability, which is the extension of Doval

(2019) to our environment. In short, a dynamic matching is a contingent matching plan and is
dynamically group stable if it is immune to any contemporary blocking coalition at any period.
We also provide a suitable notion of dynamic pairwise stability, which is being immune to two
types of blocking coalitions: first, no blocking pair exists at any period, and second, no incentive
to wait for the second-period matching market exists. We show that dynamic pairwise stability
is necessary and sufficient for dynamic (group) stability in dynamic one-to-one matching mar-

4Sönmez (1999) shows that no stable matching mechanism exists that is non-manipulable via pre-arranged
matches in many-to-one matching markets.
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kets. However, it is not sufficient, and more surprisingly, it is not even necessary for dynamic
group stability in dynamic many-to-one matching markets with responsive preferences, unlike
in static settings. Intuitively, a college may use first-period matchings as a commitment device,
and do not form blocking pairs for marginal increases through individual students. Hence, the
colleges may not behave as if they were composed of individual agents such as seats, slots, and
so on.

To analyze dynamic many-to-one matchingmarkets, we adapted the related one-to-one match-
ingmarket introduced by Roth and Sotomayor (1992) to a dynamic setting. It is a useful technical
trick to compute stability in static markets with responsive preferences. This approach is useful
for two reasons. First, there is a well-known equivalence between many-to-one and one-to-
one matching markets under static settings with responsive preferences (Roth and Sotomayor
(1992)). Second, every statically stable matching is a dynamically stable matching outcome in
dynamic one-to-one matching markets, if agents are perfectly patient.5 Hence, linking a dy-
namic many-to-one market to a dynamic one-to-one market will allow us to find the relation
between static and dynamic many-to-one matching markets.

One can analyze a dynamic many-to-one matching market as if it were static many-to-one
or dynamic one-to-one, as long as preferences are responsive and do not exhibit simultaneous
cycles: A subset of agents from each side exists whose preferences over agents in the other sub-
set are opposite.6 Indeed, any dynamically group stable matching outcome is statically stable,
absent simultaneous cycles. Therefore, dynamics do not play any role in markets with agents
whose preferences are sufficiently aligned. Intuitively, colleges use early matchings to commit
to swap some students in the second period. They are happy to do such a swap, but students
are not, which defines a simultaneous cycle. Hence, such a swap cannot arise in the absence of
simultaneous cycles. In particular, matching early with lower-ranked students would not lead
a college to match with a higher-ranked student later on. Although restrictive, acyclic prefer-
ences, meaning no simultaneous cycle exists, include some commonly observed classes such as
homogeneous preferences.

If preferences exhibit simultaneous cycles, a natural question to ask is when a statically
group stablematching is dynamically group stable. We define a notion of “average preferences”
that captures the idea that a set of mediocre students are preferred to a set of extreme —very
good and very bad—students. The notion of average preferences is akin to the notion of mean-
preserving spread.7 We show that every statically group stable matching is dynamically group

5See Lemma E.1 in the Appendix. Doval (2019) also reaches the same conclusion with sufficient patience.
6Romero-Medina and Triossi (2013) and Doval (2019), among others, introduce a notion of simultaneous cycle

in the preferences. The simultaneous cycle in Doval (2019) incorporates intertemporal preferences.
7By borrowing a tool from the theory of vector inequalities —majorization— Proposition 5.1 illustrates the

connection between these two concepts.
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stable so long as colleges have average and responsive preferences. Strategic manipulation of
a statically stable matching requires a college to match worse in the first period. The college
would do so only if it will match with a student in the second period, who was not achievable
in the static environment. Such a matching essentially yields a more spread-out group of stu-
dents to the college. Therefore, if no college prefers a more spread-out group of students to
a less spread-out one, the incentives for manipulating the static market does not arise. Hence,
with a careful choice of thematching algorithm, earlymatchings—unraveling— can potentially
be eliminated. One can skip to section 6 for analysis of such a phenomenon.

Accordingly, if a statically group stable matching is not dynamically group stable, a prefer-
ence cycle exists, and at least one college in the cycle has extreme preferences. In other words, a
student exists whom a college in the cycle ranks so high that it is willing to sacrifice some seats
to lower-ranked students to be able to get him or her in the subsequent matching market.

We then analyze the cases under which a static market fails to predict a dynamically group
stable matching. We show that if a statically group stable matching is not dynamically group
stable, the blocking coalition for the statically group stable matching forms a particular first-
period matching: colleges admit students for whom these colleges are not achievable in the
static setting. Moreover, they admit higher-ranked students in the subsequentmatchingmarket.
The intuition would be that the matching with “inferior students” in the first period is used as
a “commitment device” not to poach students from each other later on. Therefore, competition
for higher-ranked students in the subsequentmatchingmarket is lower. We see a similar pattern
in the US college-admissions system: Students who are admitted early show inferior quality in
various measures such as SAT, class rank, and extracurricular records.8

The benchmarkmodel assumes arrivals are exogenous. In the last part of the paper, we relax
this assumption. This extension is motivated by real-life applications of many-to-one match-
ing markets such as college admissions and medical-residency matching.9 Before the matching
stage, students play a non-cooperative game inwhich they choose to join themarket either in the
first period or in the second period. After arrival decisions, the matching stage begins in which
a dynamic matching takes place. The equilibrium notion is very natural: A dynamically stable
matching takes place for any arrival decision of the students, and the students best-respond to
each other, anticipating the dynamically stable matching that will arise. The challenge here is
twofold: First, dynamically stable matchings are not necessarily unique; second, dynamic sta-
bility leaves substantial freedom for the choice of a contingent matching plan. To simplify the

8See Avery et. al. (2004) for a detailed report.
9College admissions in the US is inherently a dynamic matching market whereas the medical residency market

is a centralized-static onewhereNational ResidencyMatching Program(NRMP) assigns thematching. However, both
hospitals and the interns are free to form matches before joining NRMP. There is evidence on early matchings in
that market, even though it is rare.
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analysis, we fix the contingent matching plan to two commonly used statically stable match-
ing algorithms: student —and college— proposing deferred acceptance, henceforth SPDA and
CPDA, respectively. Initially, we focus on one-to-one matching markets as a benchmark and
extend the analysis for many-to-one markets.

When we fix the contingent matching plan to SPDA, if preferences are responsive and either
acyclic or average, all equilibria are outcome equivalent to the student-optimal stable matching
of the static environment regardless of the arrivals. Therefore, no student has strict incentives
to join the market early. This result supports the evidence on the medical residency match-
ing market; that is, minimal unraveling occurs, although early matches can be observed in this
market.

Things are different if the contingent matching plan is fixed to CPDA. Arrivals exist in which
some colleges can do strictly better than the college-optimal stable matching of the static envi-
ronment, for two underlying reasons. First, colleges have leverage because they are present in
the market from the very beginning. Second, colleges can discipline themselves and not pro-
ceed for pairwise blocks in the first period, because dynamic pairwise stability is not necessary
for dynamic group stability. Thus, equilibrium arrivals exist under which some colleges achieve
a strictly better outcome than the college-optimal stable matching of the static environment by
using early matchings. Therefore, we provide an alternative explanation of why the US college
system has used some form of early admissions for a century.10 Thus, we conclude that the
choice of a stable matching algorithm might affect the “level” of unraveling.

1.1 Related Literature

This paper contributes mainly to the dynamic matching literature. Several recent studies in-
troduce stability notions for one-to-one matching markets. Among them, Doval (2019) is the
closest to our setting. She identifies the trade-off between matching today and waiting for a
better option in an environment where matchings cannot be revised. In other studies, matching
opportunities are fixed, whereas pairings can be revised over time: Damiano and Lam (2005),
Kurino (2009), Kadam & Kotowski (2018), Kotowski (2019), Liu (2018), and Pereyra (2013).
Our contribution to this literature is to introduce a suitable group stability notion for many-to-
one matching markets where matchings form over time and are irreversible.11 We identify a
form of strategic behavior that arises in dynamic many-to-one matching markets, which cannot

10Avery et. al. (2004) state that colleges use early admissions to screen the students for whom they are the first
choice, or the financially liable students. We do not underestimate the significance of such incentives, but provide
another incentive for early matchings, that is, strategic manipulation via commitment.

11Pereyra (2013) is an exception, among others. He studies a many-to-one matching environment in a dynamic
framework, inspired by a real-life assignment problem faced by the Mexican Ministry of Public Education. He
allows for matchings to be revised over time, which is the major distinction from this paper.
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emerge from the previous studies. It is an important observation because these strategic early
matchings can identify markets that are susceptible to unraveling.

Our results are complements to Sonmez (1997) and Sonmez (1999), who show in static
settings that no stable solution exists that is non-manipulable via capacities or pre-arranged
matches, respectively. We formalize such environments by incorporating manipulation incen-
tives and provide conditions under which they do not arise. A literature investigates themanip-
ulation via endowments in the context of exchange economies: Postlewaite (1979), Sertel (1994),
and Thomson (2011). We show that colleges might want to sacrifice some seats to lower-ranked
students in earlier periods, which is in the spirit of destroying the endowments in exchange
economies.

This paper also contributes to the market-design literature on matching markets. Some re-
searchers focus ondynamicmatchingmarketswhere players leave themarket permanently once
matched, from the point of view of optimality as opposed to stability: Baccara et al. (2019), Ak-
barpour et al. (2017), Anderson et al. (2017), Leshno (2017), Ünver (2010), and Dur (2011).
They study the welfare implications of various matching algorithms where players optimally
trade off the cost of waiting against the arrival of better matching opportunities.12 This paper
shows that SPDA disciplines unravelling incentives more than CPDA does.

The paper is organized as follows. Section 2 presents an example which illustrates a form
of strategic behavior in dynamic many-to-one markets. We present the model in the section
3. Section 4 introduces the notion of dynamic group stability, and discusses the features of it.
Section 5 presents the equilibrium analysis. Later in Section 6, we introduce endogenous arrival
decisions, and conclude with Section 7. In the Appendix, Section C introduces the tools which
are used to compute dynamically group stable matchings. Likewise, all omitted proofs and
examples are in the Appendix.

2 Illustrative Example

Dynamic many-to-one matching environments entail a strategic incentive that does not arise in
either static many-to-one or dynamic one-to-one matching markets: first period matchings can
be used as a commitment device to affect the second period matchings. The following example
illustrates this phenomenon.

Themarket has two sides, denoted as C for colleges and S for students. The interaction takes
place over two periods, t = 1, 2, between two colleges and six students; that is, C = {c1, c2} and
S = {s1, s2, s3, s4, s5, s6}. Assume every agent except s6 arrives in the market at period 1, and s6

12Dur (2011) study the school choice problem in a dynamic environment where some families have two children
and their preferences and priority orders for the younger child depend on the assignment of the elder one.
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arrives in period 2. For exposition, let St denote the set of students who arrive in the market at
period t. Thus, S1 = {s1, s2, s3, s4, s5} and S2 = {s6}. Let c1 have quota q1 = 3 and let c2 have
quota q2 = 2; they have two periods over which they can fill their quota. We assume matches of
the first period cannot be broken in the secondperiod, and all (first-period) unmatched students
and colleges are available in the second-period matching market.

Table 1: Preferences of Students

s1 s2 s3 s4 s5 s6
c1 c1 c1 c1 c1 c2
c2 c2 c2 c2 c2 c1

Table 2: Preferences of Colleges

c1 s6 s1 s2 s3 s4 s5
c2 s1 s2 s3 s6 ∅

Table 1 depicts the preferences for students. It indicates that, other than s6, all students pre-
fer c1 to c2. Colleges have preferences over subsets of students. We assume the preferences over
subsets of students are determined by preferences over individual students: s1 is preferred to s2
if and only if adding s1 to some subset of students is preferred to adding s2 to the same subset.
This assumption is essentially the one of “responsive preferences.” Table 2 depicts the prefer-
ences of colleges over individual students. In addition, we assume c1 strictly prefers {s4, s5, s6}
to {s1, s2, s3}. Note this ranking is not implied by responsive preferences.

If this market were static, a stable matching would exist in which c1 matches with {s1, s2, s3},
c2 matches with {s6}, and s4 and s5 are unmatched. By responsive preferences, any set that c1
prefers to this match must include s6, but s6 prefers its match to c1. Similarly, by responsive
preferences, any set that c2 prefers to its match must include one of the students s1, s2, or s3,
but they all prefer their match to c2. Hence, it is a stable matching. In fact, we can easily verify
stable matching is unique. Denote this matching bym ≡

{
(c1; s1, s2, s3), (c2; s6), (∅, s4), (∅, s5)

}
.

The unique stable matching of the static market (m) is no longer stable in the dynamic mar-
ket. To seem is not “dynamically stable,” note that {c1, s4, s5} can together block this matching:
c1 can form a period-1 matching with s4 and s5, and enters the second-period matching mar-
ket with a quota of 1. Then, there is a unique stable matching in the second period, where s6 is
matchedwith c1, whereas s1 and s2 arematchedwith c2. To see that this second-periodmatching
is stable, note that c1 prefers s6 to each of the remaining students, and similarly, by responsive
preferences, c2 prefers {s1, s2} to each —of size two— subset of the remaining students in the
second period. In fact, it is easy to verify that this matching is the unique stable matching in
the second period. Thus, the ultimate matching would be that c1 matches with {s4, s5, s6} and
c2 matches with {s1, s2}, whereas s3 remains unmatched.

Two features of the dynamic interaction are worth noting. First, the same conclusion arises
for any choice of student arrivals, provided that s4 and s5 arrive in period 1. Second, the match-
ing outcome is not a statically stablematching; in the static market, {c1, s1, s2} blocks thismatch-
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ing. This block does not happen in the dynamic market, because the only way to enroll s6 is by
committing to match with s4 and s5 early on. By doing so, c1 shows its willingness to not attract
s1 and s2 in the second period, because the first-period matchings are irreversible. Avery et. al.
(2004) emphasizes a similar behavior in college admissions in the US:

“A college that favors early applicants will draw applicants who would not have
chosen that college at the end of the application process. The college gains overall
if the new applicants it attracts are good enough to offset the loss of high-quality
students who must be denied admission in the regular pool now that the college is
favoring early applicants.” (p.186)

By making commitments, a college can strategically manipulate second-period matchings. In
particular, college c1 favors students s4 and s5; thus, it rejects {s1, s2, s3} in the subsequentmarket
because some slots are filled in the first period. Consequently, student s6 now is attracted in the
second period, since his slot in c2 is filled with students whom c1 rejected. As Avery et. al.
(2004) also states, c1 does so since it believes the loss from admitting {s4, s5} will be offset by
the admission of s6. Note that, no room is available for commitments to strategicallymanipulate
the second-period matchings in a dynamic one-to-one market.

3 Model

Themodel builds on Doval (2019). Themarket has two sides: colleges and students. They form
matches over two periods, t = 1, 2. All colleges are around in both periods, whereas students
arrive over time.

A dynamic many-to-one matching market Em = (C,S1,S2; q;%%%C,%%%S) consists of the follow-
ing: C is the set of colleges and S = S1 ∪ S2 is the set of students. Students in St arrive in the
market at period t. A profile of quotas is q ≡ (qc)c∈C , where qc is the quota restriction for c ∈ C.
The preference profile of colleges over the sets of students is denoted by%%%C≡ (%c)c∈C , where%c

is the preference relation of college c over 2S . Analogously,%%%S≡ (%s)s∈S denotes the preference
profile of students over colleges and being unmatched; that is, %s is the preference relation of
student s over C ∪ {∅}.

Throughout the paper, we make assumptions on the preferences: Preferences are complete,
transitive, and strict. Moreover, we also assume colleges have responsive preferences.

Definition 3.1. College c has responsive preferences if, for each I ⊆ S, the following hold:

1. for each s ∈ S \ I, I ∪ {s} %c I if and only if {s} %c ∅.

2. for each s, s′ ∈ S \ I, I ∪ {s} %c I ∪ {s′} if and only if {s} %c {s′}.
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For the purpose of stability in static settings, the responsive-preferences assumption allows
us to rely only on colleges’ preferences over single students as opposed to subsets of students.

A t-period matching mt is a mapping from the set of students to the set of colleges; that is,
for each t = 1, 2,

mt :
t⋃

τ=1

Sτ → C ∪ {∅},

where |m−1t ({c})| ≤ qc for each c ∈ C. Note that a t-period matching respects the quota con-
dition. We assume a match is irreversible. Thus, a given two-period matching m2 may not be
feasible; it won’t be feasible if it conflicts withm1. With this fact in mind, we say a pair (m1,m2)

is a feasible matching ifm1(s) 6= ∅ impliesm1(s) = m2(s).
LetMt be the set of t-period matchings, and letM2(m1) be the set of feasible second period

matchings given that the first-period matching is m1. Then, M ≡
⋃
m1∈M1

(
{m1} ×M2(m1)

)
is

the set of all feasible matchings.
Agents’ first-period behavior may depend on the second-period matching that they expect

to arise. A contingent matching plan gives rise to this expectation:

Definition 3.2. A contingent matching is a mapping µ : M1 → M2 such that, for each m1 ∈ M1,
(m1, µ(m1)) is feasible.

LetM denote the set of all contingent matchings. Preferences of students induce prefer-
ences over M2; we abuse notation and write m2 %s m

′
2 whenever m2(s) %s m

′
2(s). (Note that

µ(·) ∈ M2).Preferences over M2, in turn, induce preferences over first-period matchings and
contingent matchings, so that (m1, µ) %s (m

′
1, µ

′) if and only if µ(m1) is preferred by s to µ′(m′1),
and analogously for colleges.

4 Dynamic Group Stability

In a static one-to-one matching market, a (pairwise) stable matching is both individually ratio-
nal and immune to blocking pairs: a pair of agents who prefer each other as opposed to their
partners. In such markets, if a matching is immune to blocking pairs, it is immune to blocking
coalitions. This implication is not true for many-to-one markets. Thus, Roth and Sotomayor
(1990) define a matching to be group stable if it is immune to any blocking coalition. Group
stability is equivalent to pairwise stability in the static many-to-one markets with responsive
preferences.

This paper focuses on dynamic group stability. To define the concept, we begin by pointing
to the matchings that a coalition can implement.
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Definition 4.1. Let mt ∈ Mt be an arbitrary t-period matching. A coalition (C, S) ⊆ C × S can
implementm′t if the following conditions hold:

1. for each s ∈ S,m′t(s) ∈ C ∪ {∅}

2. for each s 6∈ S withmt(s) 6∈ C,m′t(s) = mt(s)

3. for each s 6∈ S withmt(s) ∈ C,m′t(s) ∈ {mt(s), ∅}.

The first part states that a new match can only form among coalition members. The second
part states that the matching of a student “not linked” to the coalition remains unchanged. The
third part states that a student who is not in the coalition but is “linked” to the coalition either
retains his original match or goes unmatched.13

We define the agents that are “available” in the second period. Fix a period-1 matchingm1.
Define

C(m1) = {c ∈ C : |m−11 ({c})| < qc} and S(m1) = {s ∈ S1 : m1(s) = ∅} ∪ S2.

Given first-period matching m1, the set of colleges with unfilled quotas is denoted by C(m1),
and the set of unmatched students is denoted by S(m1).

Definition 4.2. (Period 2 block) Fix some µ. A nonempty coalition (C, S) ⊆ C(m1)× S(m1) blocks
(m1, µ) withm′2 if (i) (m1,m

′
2) is a feasible matching, (ii) (C, S) can implementm′2, and (iii) for each

c ∈ C, (m′2)−1({c}) �c (µ(m1))
−1({c}) and for each s ∈ S,m′2(s) �s µ(m1)(s).

Note, the second period is simply a static matching market where C(m1) and S(m1) are the
only agents who are present. Thus, the period-2 block is the blocking coalition of a static envi-
ronment according to group stability.

Definition 4.3. (Period 1 block) Fix some (m1, µ). A nonempty coalition (C, S) ⊆ C × S1 blocks
(m1, µ)withm′1 if (i) (C, S) can implementm′1, and (ii) for each c ∈ C, (µ((m′1))−1({c}) �c (µ(m1))

−1({c})
and for each s ∈ S, µ(m′1)(s) �s µ(m1)(s).

A period-1 and a period-2 block have the same features. It ensures that the coalition con-
sists of agents who are present in the market, that the coalition can implement the alternative
matchingm′t, and that everyone in the coalition becomes strictly better off.

Say a period-t blocking coalition exists for (m1, µ) if some C ∈ C and S ∈ S block (m1, µ)

withm′t. Having defined blocking coalitions in a dynamic setting, a pair (m1, µ) is dynamically
group stable if it is immune to first- and second-period blocks.

13Because he can retain his original match, our solution concept is group stability as opposed to core. If we were
to consider core, the third part of Definition 4.1 would only allow for going unmatched.
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Definition 4.4. (Dynamic Group Stability) A pair (m1, µ) is dynamically group stable if

1. no period-1 blocking coalition exists for (m1, µ), and

2. for each m̃1 ∈M1, no period-2 blocking coalition exists for (m̃1, µ)

We use “dynamic stability” and “dynamic group stability” synonymously. We next discuss
properties of dynamic group stability.

4.1 Features of Dynamic Group Stability

First, note that if everyone arrives to themarket at period 2, dynamic group stability corresponds
to the standard notion of group stability. However, if everyone arrives in period 1, it is not the
standard static group stability, because arrivals in period 1 allow colleges tomake commitments.
Note, commitment has no role in one-to-one matching markets. So, in dynamic one-to-one
matching markets, dynamic stability corresponds to standard static stability if everyone arrives
at period 1.

Second, the period-2 matchingmarket that arises depends on the first-periodmatching. The
contingent matching specifies both “on-the-path” matching and “off-the-path” matchings. Dy-
namic group stability requires “static” group stability for both on-the-path and off-the-path
matchings. If it required stability only at on-the-path matching, some dynamically group sta-
ble matchings would not be reasonable. The following example illustrates the phenomenon.

Example 4.1. Let there be a college, c, and two students, s1 and s2. College c has only one slot to fill;
thus, it is a one-to-one market. Student s1 is in the market at period 1, whereas s2 arrives in period 2.
Assume c prefers s2 to s1, and s1 to going unmatched. Both students prefer matching with c to going
unmatched.

Intuitively, in any stable matching, c should be matched to s2. Indeed, this is the case for Definition
4.4. We show that if we did not impose off-path stability, this would not be the case.

Consider (m1, µ) where m1 = {(c, s1)} and µ(m̃1) = m̃1 for all m̃1. It is stable on-the path because
no agent is available besides s2 in the second period. However, it is not stable off-the path. To see this,
consider m̃1 = ∅; that is, c waits for s2. Given the contingent matching plan µ, we have the following
µ(∅) = ∅. It is not stable, because (c, si) is a blocking coalition for µ(∅), for each i = 1, 2.

Third, in a staticmatching environment, amatching is individually rational if no single agent
blocks it. We extend the notion of individual rationality (IR henceforth) to our environment.

Definition 4.5. (Individual Block) A student s blocks (m1, µ) if φ �s µ(m1)(s). A college c blocks
(m1, µ) if some matchingm′1 and some S ⊆ (µ(m′1))

−1({c})\(m′1)−1({c}) exist so that
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1. m′1(s) ∈ {c, φ} ifm1(s) = c,

2. m′1(s) = m1(s) ifm1(s) 6= c, and

3. S ∪m′1({c}) �c (µ(m1))
−1({c}).

We say that (m1, µ) is individually rational if no agent blocks (m1, µ). First, note that dy-
namic group stability implies IR. However, a dynamically group stable matching can involve
pairs (c, s) that are not IR in the static version of the market. Example 4.2 illustrates such a
situation.

Example 4.2. Consider the example in section 2 but with one change. The preference ranking of c1 is
now %c1= s6 �c1 s1 �c1 s2 �c1 s3 �c1 ∅. As before, also assume {s4, s5, s6} �c1 {s1, s2, s3}, which is
still consistent with responsive preferences.

Here, s4 and s5 are not individually acceptable by c1. However, matching with {s4, s5, s6} is individ-
ually rational for c1 as {s4, s5, s6} �c1 ∅.

In fact, (m1,m2) = {(c1; s4, s5, s6), (c2, s1, s2)} is a dynamically group stable matching outcome,
despite the fact that c1 would not individually accept s4 or s5.

4.2 Group Stability vs. Pairwise Stability

We extend the notion of pairwise stability in the static environment to our dynamic setting.

Definition 4.6. (Pairwise Block) Fix some (m1, µ).

1. (c, s) ∈ C × S1 is a period 1 blocking pair for (m1, µ) if c �s µ(m1)(s) and there exists S ⊆
(µ(m1))

−1({c}) with |S ∪ {s}| ≤ qc and S ∪ {s} �c (µ(m1))
−1({c})

2. (c, s) ∈ C(m1)×S(m1) is a period 2 blocking pair for (m1, µ) if c �s µ(m1)(s) and there exists
S ⊆ (µ(m1))

−1({c}) ∩ S(m1) with |S ∪ {s}| ≤ qc and S ∪ {s} �c (µ(m1))
−1({c})

A matching is dynamically pairwise stable if (i) it is individually rational, (ii) there is no
period 1 blocking pair, and (iii) for each first-period matching, there is no period 2 blocking
pair.

If everyone arrives at period 2, the market becomes static, and dynamic pairwise stability
corresponds to the standard notion of pairwise stability. Note the same is not true for period-1
blocking pairs. The reason is that period-1 blocking coalitions of size two allows for the fol-
lowing phenomenon: A pair of agents just wait not to match with each other, but to match
with other agents in period 2. By contrast, blocking pairs don’t allow pairs of agents to simply
wait and get different second-period matches (i.e., not with each other). This phenomenon is
illustrated with the following example.
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Example 4.3. (dynamic pairwise vs. group stability in one-to-onemarkets) Let C = {c1, c2, c3, c4},
S1 = {s1, s2}, and let S2 = {s3, s4}, and qc = 1 for all c ∈ C. Table 3 depicts the preferences in this

c1 c2 c3 c4 s1 s2 s3 s4
s3 s3 s3 s4 c3 c3 c4 c3
s1 s2 s1 s3 c1 c2 c2 c4
s2 s4 c1 c3

s2 c1

Table 3: The Preference Relations

environment.
We will show that there exists a dynamically pairwise stable matching that has a period-1 blocking

coalition.
Consider (m1, µ), wherem1 :≡

{
(c1, s1), (c2, s2)

}
andµ(m1) :≡

{
(c1, s1), (c2, s2), (c3, s3), (c4, s4)

}
.

Notice there is no period-2 blocking pair givenm1. Let µ assign the following off-the-path matches:

m1,1 :≡
{
(c2, s2)

}
, µ(m1,1) :≡

{
(c2, s2), (c1, s1), (c3, s3), (c4, s4)

}
m1,2 :≡

{
(c1, s1)

}
, µ(m1,2) :≡

{
(c1, s1), (c2, s2), (c3, s4), (c4, s3)

}
m1,3 :≡

{
∅
}

, µ(m1,3) :≡
{
(c1, s2), (c2, s3), (c3, s1), (c4, s4)

}
and for all other m̂1 ∈ M1 \

{
m1,m1,1,m1,2,m1,3

}
, define µ(m̂1), as an arbitrary stable matching over

the available agents. We can easily verify that there is no period-2 blocking pair for (m1, µ).
Note that there is no blocking pair for (m1, µ), hence it is a dynamically pairwise stable matching.

However it is not dynamically (group) stable since {c2, s1} blocks it at period 1 by waiting for the second
period matching market. With this, c2 matches with s3 whom he prefers to s2, and s1 matches with c3
whom she prefers to s2.

With example 4.3 in mind, we have the following:

Proposition 4.1. A pair (m1, µ) is dynamically group stable if and only if it is individually rational and

1. for each m̃1 ∈M1, there is no period-2 blocking pair for (m̃1, µ), and

2. there is no period-1 blocking coalition for (m1, µ).

Note that dynamic group stability requires ”stability” in the second period, and the sec-
ond period is simply a static matching environment. Because pairwise stability is equivalent to
group stability in a static setting with responsive preferences, Proposition 4.1 follows.

As example 4.3 illustrates, it does not suffice to focus on period-1 blocking pairs. The under-
lying reason is that a group of agents might wait to be matched as described by the contingent
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matching µ, whichwe call “waiting blocks.” It will prove useful to introduce amodified concept
of pairwise stability that is immune to a pair waiting —one that rules out a waiting block.

Definition 4.7. (Modified Dynamic Pairwise Stability) A pair (m1, µ) is dynamically modified
pairwise stable if it is individually rational and the followings hold:

1. for each m̃1 ∈M1, there is no period-2 pairwise block for (m̃1, µ) and

2. there is no period-1 pairwise block for (m1, µ), and

3. there is no period-1 blocking coalition for (m1, µ) with m′1 such that m′1(s) ∈ {m1(s), ∅} for each
s ∈ S1, .

The third part of Definition 4.7 is an extra requirement, which eliminates waiting blocks.
Recall from example 4.3 that (m1, µ) is not dynamically group stable, because {c2, s1} blocks
it by simply waiting for the second-period matching market. For the same reason, it is not
dynamically modified pairwise stable either.

Modified dynamic pairwise stability implies dynamic pairwise stability, but not vice versa.
Also, the two are equivalent in a static environment with responsive preferences. Thus, the
modified pairwise stability coincides with group stability in static environments with respon-
sive preferences. The following proposition summarizes the relation in dynamic settings.

Proposition 4.2. Fix some Em.

i. If qc = 1 for all c ∈ C, then (m1, µ) is dynamically modified pairwise stable if and only if it is
dynamically (group) stable.

ii. If qc 6= 1 for some c ∈ C, then modified dynamic pairwise stability is neither sufficient nor necessary
for dynamic group stability.

The first part of Proposition 4.2 states that modified dynamic pairwise stability is necessary
and sufficient for dynamic stability in dynamic one-to-one matching markets. The second part
states that neither dynamic group stability nor modified dynamic pairwise stability implies the
other, in dynamic many-to-one matching markets.

To show the first part of Proposition 4.2, we initially focus on the second part. Lemma D.1
implies these two conceptsmay differ in predictions only due to agents’ first-period behavior. In
particular, colleges might want to match strategically in the first period to change the outcome
in the second period for themselves. But such a behavior occurs if the matched agents join the
market in the second period as well. Clearly, it is not the case for dynamic one-to-one markets.
Therefore, the first part of Proposition 4.2 follows.
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The illustrative example on page 7 serves as a counterexample for the second part of Propo-
sition 4.2; see appendix D.2. Intuitively, a college may have incentive to marginally enhance its
portfolio by a student. This incentivemight lead it to amajor loss, as in our example in section 2.
However, colleges can choose to control their instincts for marginal increases by committing to
strategically match worse in the first period in a dynamic setting. Hence, surprisingly, pairwise
stability is not necessary or sufficient for group stability in dynamic markets with responsive
preferences.

The conclusion by Proposition 4.2 is very useful because researchers tend to assume that the
results regarding stability fromone-to-onemarkets extend tomany-to-onemarketswith respon-
sive preferences. However, we show that such an assumption can lead to unstable predictions
unless strategic manipulation we identified here is ruled out.

5 Equilibrium Analysis

Initially, we focus on the instances in which a static version of the market works fine. In other
words, we identify the cases under which dynamics do not play a role. Next, we focus on
the instances in which dynamics do matter. We begin pointing to the incentives for strategic
manipulation via commitment by going back to our motivating example.

5.1 Illustrative Example: Strategic Manipulation via Commitment

We revisit the illustrative example to identify the mechanism behind the blocking coalition for
dynamically stable matching obtained in the related one-to-one market. First, notice the follow-
ing:

Remark 5.1. Recall that in the static version of the market introduced on page 7,

m = {(c1; s1, s2, s3), (c2, s6), (∅, s4), (∅, s5)}

is the unique stable matching. Note that {s4, s5, s6} �c1 {s1, s2, s3}. Although s4 and s5 are willing
to form a blocking coalition with c1 in the static setting, s6 prefers c2 to c1. However, in the dynamic
environment, s6 is forced to be matched with c1.

The underlying reason in the example is that c2 fills its quota with better students than s6,
namely, {s1, s2}. Notice c2 is able to match with s1 and s2 because c1 lets them go by filling their
place with s4 and s5 in the first period. College c1 does so because s6 remains to be picked in
the second period, whom c1 values the highest.
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Thus, c1 sacrifices some seats to lower-ranked students in the short run to be able to reach a
highly ranked student in the long run. Notice c1 only engages such a strategic matching in the
first period due to the combination of the following reasons:

(i) colleges c1 and c2 have reverse preferences over students s6 and si; that is, s6 �c1 si, and
si �c2 s6, for i = 1, 2, 3;

(ii) students s6 and si have reverse preferences over colleges c2 and c1; that is, c2 �s6 c1, and
c1 �si c2, for i = 1, 2, 3;

(iii) the capacity constraints are binding for both colleges; and

(iv) student s6 is very highly valued by college c1, whereas others are not as distinct.

All these reasons together encourage c1 to follow such a strategy. We next show that if no such
systematic state of affairs exists, then colleges do not have incentives to act strategically. When
the manipulation incentives are off the table, dynamic many-to-one matching markets are not
fundamentally different from static many-to-one markets.

5.2 When Dynamics Do Not Matter

In this section, we provide conditions under which dynamics do not play any role.

5.2.1 The Role of Simultaneous Cycles

When the preferences are sufficiently aligned, incentives for strategicmanipulation do not arise.
Recall from the example that colleges c1 and c2 wish to swap students s1 and s6, but students
would not like that. There, 〈c1, s6, c2, s1, c1〉 is a “simultaneous cycle.”14 This type of preference
plays a crucial role in strategic manipulation via commitment. If the preferences do not exhibit
such instances, the strategic manipulation is ruled out. We define a class of preferences that
precludes such instances.

Definition 5.1. Fix Em. The string 〈c0, s0, c1, s1, . . . , cn, sn〉 is a simultaneous cycle:

1. for each i = 1, . . . , n, ci %si−1
ci−1 %si−1

∅ and si %ci si−1 %ci ∅ and

2. for some i ≥ j + 2, either ci = cj or si = sj , and ci+k = cj+k and si+k = sj+k for k = 1, 2 . . . .
14In fact, s1 can be replaced by s2 or s3 to obtain different simultaneous cycles.
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The simultaneous cycle is not a new concept; it is widely used in the matching literature.
Indeed, the number of stable matchings in a static environment is directly linked to the simul-
taneous cycles. We say that the preferences are acyclic if they do not exhibit a simultaneous
cycle.

Next, we analyze the relation between dynamic and static markets. Fix a dynamic many-to-
one matching environment Em and the pair (m1, µ) on Em. We construct related static many-to-
one market” Es and corresponding pair (m̃1, µ̃) on Es. It simply is the corresponding matching
market where all the students arrive in the market at the second period. See Appendix C.2 for
a formal treatment.

Theorem 5.1. Fix Em such that the preferences are acyclic. Then, (m1, µ) is dynamically group stable if
and only if (m̃1, µ̃) ≡ (∅, µ̃(∅)) is group stable.

Theorem 5.1 states that the set of dynamically group stable matchings of a dynamic many-
to-one matching market is equivalent to that of the related static many-to-one market. Note the
result holds regardless of the arrivals. Thus, dynamics do not play a role as long as preferences
are responsive and acyclic.

Intuitively, inferior first-period matchings are used as a commitment device to not poach
students from each other in the subsequent market. For that commitment to arise, colleges
would like to swap some students in the second period. They could not do such an exchange
in the static environment, because the students who are being swapped are unhappy about it.
Thus, if any of those colleges have more slots to fill, that college cannot commit to not attract
the swapped student back. But notice such an interaction only takes place if preferences allow
for such an exchange that students do not like, which defines a cycle. Hence, the result follows.

In the example on page 7, colleges c1 and c2 have reverse preferences for s ∈ {s1, s2} and
s6, and vice versa. Therefore, c1 and c2 would like to exchange some students so that they both
can be better off. It seems possible even in the static version of the market. However, c1 cannot
commit to not attract {s1, s2} back, after such an exchange, because more slots remain to be
filled by c1. Thus, c1 fills those slots in the first period with other lower-ranked students so that
it shows its commitment to swap s ∈ {s1, s2} with s6. Thus, first-period matchings are used as
a commitment device not to poach students later on.

Although restrictive, acyclic preferences are an important class. Homogeneous preferences,
for example, are in this class. In a matching environment where preferences are homogeneous
-at least for one side- early matches do not change the outcome as compared to the statically
group stable matchings.

Unlike in the US, college admissions in Turkey are static, with the Council of Higher Educa-
tion assigning students to the colleges. It is a centralized system such that students are ranked
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based on predetermined rules. The first-ranked student is the most desired one for each col-
lege, and then the second-ranked one, and so on. Thus, colleges’ preferences are homogeneous,
unlike the US college admissions, where preferences are not necessarily aligned. Preferences
over students are formedmainly based on the information that colleges have about the students.
The only relevant information in Turkish college admissions is the SAT score and GPA in high
school, which have the same valuation across colleges. However, colleges in the US have var-
ious sources of information about the students, and these sources can potentially vary across
colleges. For example, the interview process and alumni parents, among others, provide differ-
ent information to different colleges about students. Thus, cyclic preferences may arise in the
US college-admission system. In light of our first result, early admissions makes a difference as
compared to static admissions in the US, whereas it does not in Turkey. Thus, the result sug-
gests a rationale for the existence of early admissions in the US college system for more than a
century, unlike the static centralized system of college admissions in Turkey.

Note the strategic manipulation via commitment is directly related to the quota restriction.
For colleges to not poach students from each other, the number of slots to be filled must be
limited. Hence, if the quota restriction is not binding for any college, dynamics do not play any
role, and thus the static version of the market works just fine. See Appendix E.4.

5.3 When Dynamics Matter

In this section, we focus on instances where dynamics matter. First, we provide one condition
over the preferences under which static version of the market still yields dynamically group
stable matchings. However, potentially more dynamically group stable matchings occur than
what related static market predicts.

5.3.1 The Role of Extreme Preferences

Although it is a major one, cyclic preference is not the only reason for strategic manipulation
via commitment. In this section, we allow for cyclicity and analyze a case under which strate-
gic manipulation via commitment is ruled out. It turns out we can characterize a subset of
dynamically group stable matchings with the static version of the market, by categorizing the
preferences further.

Note that responsive preferences can refer to multiple preference rankings across sets of stu-
dents. As an example, let some college c have responsive preferences and rank single students in
{s1, s2, s3, s4} in the following way: s1 �c s2 �c s3 �c s4. Now consider the following rankings
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of sets of students of size 2 by c:

%1
c ≡ {s1, s2} �c {s1, s3} �c {s1, s4} �c {s2, s3} �c {s2, s4} �c {s3, s4},

%2
c ≡ {s1, s2} �c {s1, s3} �c {s2, s3} �c {s1, s4} �c {s2, s4} �c {s3, s4}.

Note the only difference between %1
c and %2

c is the ranking of {s1, s4} and {s2, s3}. Both %1
c and

%2
c are consistentwith the responsive preference.15 Although how these two are ranked does not

affect the set of stable matchings in static settings, it can play a critical role in dynamic settings.
Thus, we further define two classes of preferences:

Definition 5.2. Let A,B ⊂ S such that A ∩B = ∅, |A| = |B| and

maxA �c maxB �c minB �c minA.

Then, c has locally average (extreme) preferences at A and B if B �c A (A �c B). We say that c
has average (extreme) preferences if c has locally average (extreme) preferences for any such disjoint
subsets of students A and B.16

Extreme and average preferences subsume a very intuitive class that is akin to the notion of
“mean-preserving spread.” First, we borrow a notion from the theory of vector inequalities:

Definition 5.3 (Majorization). Let a, b ∈ Rn. We say that a majorizes b, denoted by a � b, if the

following holds:
n∑
i=1

ai =
n∑
i=1

bi, and
k∑
i=1

a(i) ≤
k∑
i=1

b(i), for k = 1, . . . , n− 1, where a(·) = (a(1), . . . , a(n))

is the ordered vector such that the components are rearranged in increasing order; that is, a(i) ≤ a(j)

whenever i ≤ j.

Now, let A,B ⊂ S such that A∩B = ∅, and |A| = |B| = n. Let uc : S → R and define vAc and
vBc in the following way:

vAc ≡ (uc(a1), uc(a2), . . . , uc(an)), and vBc ≡ (uc(b1), uc(b2), . . . , uc(bn)),

where vAc and vBc are arranged in increasing order, without loss of generality. Notice that vAc , vBc ∈
Rn. We say that Amajorizes B if vAc majorizes vBc .

Proposition 5.1. For any A,B ⊂ S such that A majorizes B; that is, vAc � vBc :

i. if c ∈ C has average preferences, then B �c A
15In fact, these two are the only rankings that are consistent with responsiveness.
16maxS = s ∈ S such that s �c s̃ for any s̃ ∈ S, analogouslyminS follows.
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ii. if c ∈ C has extreme preferences, then A �c B

Proposition 5.1 immediately follows from the Definition 5.2 and Definition 5.3. One can
observe thatmajorization is akin to the notion of “mean-preserving spread.” Thus, a college that
has extreme preferences prefers a set of students that is a mean-preserving spread of another
one.

In our motivating example, college c1 ranks {s4, s5, s6} higher than {s1, s2, s3} and thus en-
gages in a strategic manipulation. However, if this ranking were to be reversed and the rest
remained same, c1 would not commit to match with s4 and s5 to strategically manipulate the
second-period matching. See example A.1 for an illustration. We generalize this insight by
categorizing the responsive preferences further as extreme and average preferences.

Proposition 5.2. Fix Em such that colleges have average preferences. Let Es be the related static many-
to-one matching market. For any matching (∅, µ̃) such that µ̃(∅) is group stable on Es, a dynamically
group stable matching (m1, µ) on Em exists such that µ(m1) = µ̃(∅).

Proposition 5.2 states that any statically group stable matching is also an outcome of a dy-
namically group stable matching. Thus, forgetting about dynamics would not lead to a dynam-
ically unstable outcome.

Intuitively, strategic manipulation arises if there is a college that would like to admit inferior
students in the first period at the expense of a relatively better student. Such an interaction
yields more spread-out group of students to the college. Therefore, strategic manipulation is
ruled out for environments where the preferences are average, and thus the static versionworks
fine.

Note that there could be dynamically stable matchings which are not statically stable. But
our point is that the reverse does not happen.17 Although proposition 5.2 does not fully charac-
terize the dynamically stable matchings in the original market, it has an important implication:
If one wishes to shut down early matches via a self-enforcing dynamic matching —a dynam-
ically group stable matching— he can do so as long as colleges have average and responsive
preferences.

5.3.2 When Static Market Fails

Next, we focus on instances where the static version of the market does not give dynamically
group stable matchings. We begin by pointing out an immediate corollary.

Corollary 5.1. Fix Em. If there is no dynamically stable matching (m1, µ) such that µ(m1) = η for some
“statically” stable matching η over C ∪ S, then the following hold:

17The motivating example in Doval (2019) is an instance of such cases. See also Example 6.3.
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i. Preferences exhibit a cycle.

ii. Let O denote a preference cycle. Then, |
∑
c∈O

qc| ≤ |S|.

iii. For some c ∈ O, c has locally extreme preferences for some subsets of students.

Corollary 5.1 provides some properties in markets where statically group stable matchings
are not dynamically group stable. In other words, it identifies necessary conditions for the static
version of some dynamic many-to-one matching market to fail in its predictions.

Recall the period-1 blocking coalition to the statically stable matching in our example on
page 7. There, the first-period matching forms between c1 and {s4, s5}. Notice both s4 and
s5 are ranked below every student whom c1 can achieve in the static version of the market;
that is, s1, s2, and s3. Moreover, s6, whom c1 prefers more than everyone else, is picked by c1
in the subsequent market. This feature is not an artifact of the example. We show that if a
period-1 blocking coalition exists for some statically group stable matching, then each college
in the blocking coalition forms a period-1 matching with lower-ranked students. This finding is
interesting for two reasons. First, it identifies that colleges use lower-ranked students in earlier
periods to swap some higher-ranked ones in the subsequent market. Second, it is relevant from
the application point of view: The US college system has a similar feature.

First, we note the existence of strategic manipulation crucially depends on the choice of the
“statically stable matching algorithm” in the second period. A slightly different version of our
example illustrates the idea:

Example 5.1 (Illustrative example with qc2 = 3). Consider our example on page 7 with one change;
that is, qc3 = 3. Let the rest remain as on page 7. Here, m = {(c1; s1, s2, s3), (c2, s6)} is still the unique
statically stable matching. If c1 forms a first-period matching with {s4, s5}, that is, m1 = {(c1; s4, s5)},
then there are two stable matchings in the subsequent matching market C(m1) ∪ S(m1):

µC(m1) = {(c1; s4, s5, s6), (c2; s1, s2, s3)}, and µS(m1) = {(c1; s1, s4, s5), (c2; s2, s3, s6)},

which correspond to the outcome of CPDA and SPDA, respectively.

If CPDA is in use in the second period, c1 would proceed for the period-1 blocking coalition
and match with {s4, s5}. However, it would not do so if SPDA is in use. Thus, the choice of the
statically stable matching algorithm in the second period may give rise to a period-1 blocking
coalition. Note both versions of our example share a common feature: if a period-1 blocking
coalition exists, the first-period matching is between c1 and {s4, s5}. Hence, our result follows:
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Proposition 5.3. Let Em be a dynamic many-to-one matching market, and let µ be a statically stable
matching algorithm. If (∅, µ) is blocked by a coalition C ∪ S at period 1 with m1, then for each c ∈ C,
the following hold:

i. s′ �c s for all s′ ∈ (µ(∅))−1({c}) and s ∈ m−11 ({c}).

ii. s′ �c s for all s′ ∈ (µ(m1))
−1({c}) \m−11 ({c}) and s ∈ m−11 ({c}).

Proposition 5.3 states that if a statically stable matching is blocked by a coalition with a
first-period matching, then all the colleges in the coalition will match with students in the first
period for whom that college was not achievable in the static market. Moreover, colleges in the
coalition admit less preferred students in the first period, whereas the more preferred ones get
admitted in the second period. It is relevant for an empirical point of view: Early admissions
in the US college system show a similar pattern. Avery et. al. (2004), who study the incentives
for colleges regarding early admissions, document the following:

“Early applicants have slightly lower SAT scores and class rank, and slightly less
impressive extracurricular records than do regular applicants . On average, these
early applicants scored between 0 and 5 points lower on each section of the SAT-1
than regular applicants to the same colleges.” (p.141)

Remark 5.2 (m1 is part of a dynamically stable matching). Consider the example on page 7. Note
that (∅, µS) is not dynamically group stable, although µS(∅) is statically group stable. Because {c1, s4, s5}
blocks (∅, µS) in the first periodwithm1 = {(c1, s4, s5)}. It is easy to verify that (m1, µ

S) is a dynamically
group stable matching. Thus, the first-periodmatching that the coalition forms to block the statically stable
matching is part of a dynamically group stable matching.

One might wonder whether the case in remark 5.2 is always true. Unfortunately, further
blocking coalitions to (m1, µ)might occur, which already arises through a blocking coalition to
statically stable matching (∅, µ). See example A.3 in the appendix for an illustration.

5.4 Method of Proof

Our goal is to find the dynamically group stable matchings in a dynamic many-to-one match-
ing market. Roth and Sotomayor (1990) introduce a useful technical trick to compute stability
in static many-to-one matching markets with responsive preferences, namely, related one-to-one
matching market. We follow a similar approach by extending the arguments for a dynamic set-
ting. Thus, we construct a related dynamic one-to-one market. In words, it is an artificial market in
which college slots are treated as individual agents. Then, we carefully map dynamic match-
ings from the artificial to the original market. See Appendix C for the construction. Our goal
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Many-to-One Static

Responsive Preferences

One-to-One Static

Many-to-One Dynamic
?

One-to-One Dynamic

? Sufficient Patience

Figure 1: Relation between Many-to-One and One-to-One matching markets

is to identify conditions under which a dynamically group stable matching is obtained via this
artificial market. See Appendix C.3 for an illustration of strategic manipulation that does not
arise in the related one-to-one market.

Linking dynamic many-to-one market to a dynamic one-to-one market is useful for two rea-
sons. First, any statically stable matching is dynamically stable in dynamic one-to-onematching
markets as long as agents are sufficiently patient. Second, the set of stable matchings in a static
many-to-one market is equivalent to that of the related static one-to-one market if colleges have
responsive preferences. Hence, the diagram in Figure 1 commutes and we are able to link the
dynamic many-to-one matching market to a static many-to-one matching market.

6 Endogenous Arrivals

The decision to join the first-period matching market is an endogenous choice of both parties.
Although our analysis is based on the fact that students exogenously arrive at the market, the
ones who “manipulate” the static matching outcome are strictly better off as opposed to the
static outcome. Thus, it might seem like theywould endogenously choose to join the first-period
matching market anyways. Students’ and colleges’ incentives to join the first-period matching
market is an important channel to study. In this section, we provide a partial answer to such a
phenomenon.

Although we would like to understand this phenomenon for many-to-one matching mar-
kets, it has not been studied for one-to-one matching markets either. Thus, here we analyze the
incentives for one-to-one markets as a benchmark.

We maintain the assumption that colleges are in the market from the beginning of the first
period, and add an arrival stage for the students: They simultaneously decide to join themarket
at either period 1 or period 2. We assume a non-cooperative game in the first stage; that is, each
student decides when to enter the market, taking the other students’ entry decisions as given.
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After the entry stage, the matching stage begins, and the rest of the model is the same as before.
Let S ≡ {s1, s2, · · · , sn}, and C ≡ {c1, c2, · · · , cm} be the set of students and colleges respec-

tively, where each college ci has a quota qci . The timeline is as follows:
Stage 1: Each si ∈ S, simultaneously, decides whether to join the market in period 1, or wait

for the “main" market in period 2.
Stage 2: Given the arrivals, the dynamicmatching (m1, µ) takes place. That is,m1 is a match-

ing between students who arrive to themarket in period 1 and the colleges, and µ is a contingent
matching plan that assigns a feasible period-2 matching for every possible first-period match-
ing.

Definition 6.1. An equilibrium of this game consists of arrival decisions (a1, · · · , an), ai ∈ {1, 2}, and
a dynamic matching (m1, µ) such that:

i. given (m1, µ), each student’s action is a best response, and

ii. (m1, µ) is dynamically group stable for any (ã1, · · · , ãn).

Clearly, the decision of a student depends solely on the partner he will be matched with
through the dynamically stable matching, which need not be unique. Our equilibrium con-
cept requires dynamic stability, which requires the contingent matching plan µ to be stable for
all possible first-period matchings. Therefore, we only consider “statically stable” contingent
matching plans.

Note that statically stable contingent matching plans can be very general. For example, re-
gardless of all other students’ arrivals, we can use SPDA if some particular student arrives in the
first period, and CPDA otherwise. One can use many others, because SPDA and CPDA are not
the only statically stable matching algorithms. Thus, for a general stable contingent matching
plan, one can potentially induce all the students to join the market in the first or second period.
To overcome this phenomenon, we fix the contingent matching mechanism µ to two commonly
used statically stable matching mechanisms: SPDA and CPDA.

6.1 Student-Proposing Deferred Acceptance: Medical-Residency Market

The National Residency Matching Program (NRMP) in the US has been in use for a very long
time. It is a generalized version of intern-proposing deferred acceptance, which assigns the
intern-optimal stablematching. Nowwe consider a dynamicmatchingmarketwhere the intern-
optimal stable matching arises in the second period among the agents who are available. As
mentioned above, we focus first on the one-to-one case.

As mentioned earlier, we assume the hospitals are always in the market. We want to under-
stand the incentives to join the market early or late from the interns’ perspective. We find that
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as long as all the students are perfectly patient, a unique dynamically stable matching outcome
arises, which is equivalent to the intern-optimal stable matching of the static environment. For
this section, we only change the notation from colleges and students —(C,S)— to hospitals and
interns —(H, I)— respectively.

Let (H, I,%H,%I) be a static one-to-one matching market, and let mH and mI denote the
intern-optimal and hospital optimal stable matching of the static matching environment, re-
spectively.18 The following proposition formally states our result:

Proposition 6.1. Let (H, I1, I2,%H,%I) be an arbitrary dynamic one-to-one matching market where
I1 ∪ I2 = I. Assume agents have strict preferences and are perfectly patient. Then, µI(m1) = mI for
any dynamically stable matching (m1, µI),

Proposition 6.1 implies that if we assumed the hospital-intern market were a one-to-one
matching market, interns would be indifferent between matching early or waiting to join the
program, because their partners are the same in all cases. Thus, no student has strict incentives
to arrive early. Proposition 6.1 has an obvious implication for the equilibrium pattern:

Corollary 6.1. Let the contingent matching plan be the intern-proposing deferred acceptance. For any
one-to-one matching market with perfect patience and strict preferences, any equilibrium of the endoge-
nous arrivals game exhibits the following properties:

i. any dynamically stable matching yields intern-optimal stable matching of the static environment
for any arrivals,

ii. any arrival decision by the interns is part of an equilibrium.

Because each student is indifferent between arriving to the market in period 1 and period 2
regardless of others’ decisions, Corollary 6.1 simply follows. Also, because the unique equilib-
rium outcome is equivalent to the intern-optimal stable matching of the static environment, we
can simply extend the result for some classes of dynamic many-to-one matching markets. The
following corollary summarizes:

Corollary 6.2. Fix a dynamic many-to-one matching market Em such that the preferences are transitive,
strict, and responsive, and agents are perfectly patient. Then, µI(m1) = mI for any dynamically stable
matching (m1, µI), if at least one of the followings holds:

i. preferences do not exhibit any cycle.

ii. qh ≥ |I| for each h ∈ H.
18Notice that hospitals correspond to colleges, and interns correspond to students from our earlier description.

Moreover, note thatmk ≡ µk(∅) for k = {H, I}
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iii. each h ∈ H has average preferences.

The first and second parts of Corollary 6.2 are consistent with Theorem 5.1 and Proposition
E.3 as one should expect. The last part is relevant to the medical-residency matching market,
since hospitals would not be expected to act strategically by hiring lower-quality interns at the
expense of relatively higher quality interns. Therefore, Corollary 6.2 provides an alternative
explanation forwhyNRMP is considered a successfulmatching programwith little unravelling.

6.2 College-Proposing Deferred Acceptance: College-Admissions Problem

In this section, we consider the college-admissions problem under the assumption that the
CPDA algorithm is in use in the second period. We find that colleges can never do worse than
the college-optimal stable matching in this case, which is aligned with Proposition 6.1:

Proposition 6.2. Let (C,S1,S2,%C,%S) be an arbitrary dynamic one-to-one matching market where
S1 ∪ S2 = S. Assume agents have strict preferences and are perfectly patient. Then, µC(m1) %C mC for
any dynamically stable matching (m1, µC).

Recall that mC is the college-optimal stable matching of the static market, and analogously
mS . The proof proceeds as follows. First, we show that if no college matches worse in the first
period compared to static case, the same holds also for the colleges that match in the second
period. Thus, if a college exists that matches worse than statically stable matching, then such a
matching exists in the first period as well. However, we show this matching cannot be a dynam-
ically stable matching, because the colleges that match worse in the first period form a period-1
blocking coalition and wait to be matched in the second period.

Unlike the medical-residency matching market, multiple dynamically stable matching out-
comes can occur for some arrivals. Example 6.1 illustrates such an instance:

Example 6.1. Let C = {c0, c1, c2} with qc = 1 for each c ∈ C, S1 = {s0} and S2 = {s1, s2}. Table 4
describes the preference relations in this environment:

c0 c1 c2 s0 s1 s2
s1 s1 s2 c2 c2 c1
s2 s2 s1 c1 c1 c0
s0 s0 s0 c0 c0 c2

Table 4: Preference Relations for example 6.1

When the contingent matching is fixed to CPDA in this market, two dynamically stable matching
outcomes arise:
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i. (m1, µC), wherem1 = {(c0, s0)} and µC(m1) = {(c0, s0), (c1, s1), (c2, s2)}.

ii. (m̃1, µC), where m̃1 = ∅ and µC(m̃1) = {(c0, s0), (c2, s1), (c1, s2)}.

As in the example 6.1, some colleges match strictly higher (in some dynamically stable
matchings) than the college-optimal stable matching of the static environment when we fix the
contingent matching plan to CPDA.

Notice the dynamic stability of (m1, µC) in example 6.1 relies on the fact that s2 ∈ S2, as
(c0, s2) forms a blocking pair for µC(m1) in the static environment. Thus, if s2 were in the market
in period 1, (c0, s2) would block the dynamic matching (m1, µC). So, the best response of the
student s2 to others’ decisions is to join the market at period 1.

Unlike the medical-residency matching market, some students have strict incentives to join
the market early in the college-admissions problem. This raises two questions: Is it joining the
market in period 1 weakly dominant for students? Do equilibrium arrivals exist under which
some colleges match strictly better than in the static case? The following example provides
answers to both questions, which is no for the former and yes for the latter:

Example 6.2. Let C = {c0, c1, c2, c3, c4}with qc = 1 for each c ∈ C, S1 = {s0, s4} and S2 = {s1, s2, s3}.
Table 5 describes the preference relations in this environment:

c0 c1 c2 c3 c4 s0 s4 s1 s2 s3
s3 s2 s1 s0 s3 c0 c4 c1 c2 c3
s2 s1 s2 s3 s4 c3 c2 c0 c4
s0 c1 c0

Table 5: Preference Relations for example 6.2

First, note that mC = {(c0, s0), (c1, s1), (c2, s2), (c3, s3), (c4, s4)} = µC(∅) is the college-optimal sta-
ble matching of the static environment. Consider the dynamically stable matching (m1, µC):

m1 = {(c0, s0), (∅, s4)} and µC(m1) = {(c0, s0); (c1, s2), (c2, s1), (c3, s3), (c4, s4)}.

Notice that (c0, s2) would be a blocking pair for µC(m1) in the static environment. It is easy to verify that
(m1, µC) is dynamically stable.

Assume now that s2 joins the market in period 1, so that she can block (m1, µC) together with c0. That
is, S1 = {s0, s2, s4} and S2 = {s1, s3}. In this “new” dynamic matching environment, the dynamic
matching (m̃1, µC), defined by

m̃1 = {(∅, s0), (c1, s2), (c4, s4)} and µC(m̃1) = {(c1, s2), (c4, s4); (c0, s3), (c2, s1), (c3, s0)},
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is a dynamically stable matching, because there is no pairwise block and no agents who wishes to wait.
Second, s2 matches with c1under both (m1, µC) and (m̃1, µC). Thus, s2 does not have incentive to arrive
in period 1 to block (m1, µC), so long as (m̃1, µC) arises if she does so.

In the environment described in example 6.2, the arrivals a4 = a0 = 1 and a1 = a2 = a3 = 2,
and the dynamic matching (m1, µC) can be sustained as an equilibrium outcome.

As example 6.2 illustrates, joining the market early is not a weakly dominant strategy. More-
over, equilibriumarrivals exist underwhich some collegesmatch strictly higher than in the static
environment.

Although students can sometimes block such matchings by arriving early as in example 6.1,
the same logic does not extend for many-to-one markets. The underlying reason is that col-
leges can just discipline themselves and do not go after the blocking pairs. Recall that dynamic
pairwise stability is neither necessary nor sufficient for dynamic group stability in dynamic
many-to-one matching markets. See the example below for an illustration:

Example 6.3. Let C = {c1, c2} with qc = 2 for each c ∈ C, and S = {s0, s1, s2, s3, s4}. Table 6 describes
the preference relations in this environment:

c1 c2 s1 s2 s3 s4
s1 s2 c2 c1 c2 c1
s2 s3 c1 c2 c1 c2
s3 s1
s4 s4

Table 6: Preference Relations for Example 6.3

Note that mC = {(c1; s2, s4), (c2; s1, s3)} is the college optimal stable matching of the static environ-
ment. However, the matching (m1, µC) where m1 = {(c1, s4)}, and µC(m1) = {(c1; s1, s4), (c2; s2, s3)}
is dynamically stable as long as s4 joins the market in the first period, regardless of others’ arrivals.

Notice that (c1, s2) is a blocking pair for µC(m1) in the static environment for example 6.3.
It might as well be a blocking pair for (m1, µC). However, recall from the Proposition 4.2 that
dynamic pairwise stability is neither necessary nor sufficient for dynamic group stability. There-
fore, c1 disciplines itself not to pursue a pairwise blocking coalition so that it can reach a strictly
better outcome in example 6.3.

As example 6.3 illustrates, colleges can potentiallymatch strictly better by forming some “in-
ferior” first-periodmatchings, if we fix the contingent matching plan to CPDA.19 Proposition 6.1

19Notice the term “inferior” corresponds to a different set of students in this case from the one Proposition 5.3
states. However, they both emphasize a similar pattern. Sonmez (1999) also identifies such matchings as pre-
arranged matches to manipulate the statically stable matching mechanism.
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can shed light on why the medical-residency matching market experiences very little unravel-
ling. Proposition 6.2 supports the evidence on the US college system; that is, some type of early
admissions with different labels has always existed, because colleges can be strictly better off
via a dynamic matching process.

7 Concluding Remarks

This paper analyzes many-to-one matching markets in a dynamic framework. Applications of
such markets include but are not limited to college admissions and various entry-level profes-
sional labor markets such as medical-residency matching in the US. In these markets, agents
might arrive and form matches sequentially, and breaking a match is considered highly costly
for various reasons. By incorporating these key features, we identify a form of strategic behavior
that pertains to dynamic many-to-one matching markets. We call such behavior “strategic ma-
nipulation via commitment” which exhibits particular earlymatchings intending tomanipulate
the outcome of subsequent matching process.

Unless strategic manipulation via commitment is ruled out, dynamicmany-to-onematching
markets are fundamentally different from static many-to-one and dynamic one-to-one markets.
We provide conditions under which a “related” static many-to-onemarket yields a dynamically
stable matching outcome. The conditions are acyclic preferences, average preferences, and high
enough quota constraints.

We also analyze the case where agents endogenously choose when to join the market. Our
results exhibit similar patterns to the empirical evidence on college admissions in the US and
medical residency matching market.

Although they are outside the scope of this paper, the following questions are also worth
studying. First, one might wonder whether dynamically group stable matching always exists
in environments with responsive preferences and perfect patience. Appendix B.1 provides an
example where a dynamically group stable matching does not exist if slight impatience is in-
troduced. Two underlying forces of non-existence are present. First, agents have incentives to
form early matches because they are impatient. Second, some slots ought to be left open in
the first period for strategic manipulation. These two forces move in opposite directions, and
hence can lead to non-existence. Knowing whether the existence with perfect patience can be
recovered (because the former incentives disappear) would be interesting. Second, designing
a “dynamic” matching algorithm that delivers a dynamically group stable matching, if it exists,
would be interesting. Lastly, peer effects in suchmatching environments are very likely to arise.
Thus, incorporating peer effects would be not only interesting but also more realistic for some
applications of many-to-one matching.
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A Appendix: Omitted Examples

A.1 Examples for section 5.2

Example A.1. Let C = {c1, c2}, S1 = {s1, s2, s3, s4, s5} and S2 = {s6}. Let the preferences of agents be
as in tables 1 and 2, and colleges have responsive preferences. Assume that {s1, s2, s3} �c1 {s4, s5, s6}
which is still consistent with responsive preferences, and the rest is same as it is described on page 7.

In this version of the environment, the related dynamic one-to-one market still gives the same outcome;
that is, {(c1; s1, s2, s3), (c2; s6), (∅, s4, s5)}. This is in fact the unique statically group stable matching as
well. Note here, c1 would not like to match with {s4, s5} in the first period to be able to reach s6 in the
second period. It is simply because {s1, s2, s3} �c1 {s4, s5, s6}, that is, c1 ranks an average set of students
higher than an extreme one.

Example A.2. Let C = {c1, c2}, S1 = {s1, s2, s3, s4, s5} and S2 = {s6} be the sets of agents. Also, let
the preferences of agents are defined as in tables 1 and 2 and colleges have responsive preferences. Assume
that {s6} �c1 {s1, s2, s3, s4, s5} which still is consistent with responsive preferences. Finally, let qc1 = 5

and qc2 = 2. Notice the set-up is same as in page 7 except college c1 has five slots to fill. Hence, the
number of students are less than the number of slots in the market; that is, |S| < |qc1 + qc2 |.

Although it is not obvious, {(c1; s1, s2, s3, s4, s5), (c2; s6)} is the unique dynamically stable matching
outcome of the related one-to-one market. Colleges c1 and c2 would still like to swap students {s1, s2, s3}
and s6. However, c1 cannot commit to not poach some students s ∈ {s1, s2, s3} in dynamic setting
either, as in the static one. Since there are unfilled slots for them in the second period although some slots
are filled in the first period. Thus, {(c1; s1, s2, s3, s4, s5), (c2; s6)} is the unique dynamically group stable
matching of the original market as well.

A.2 Examples for Section 6

ExampleA.3. Let C = {c1, c2, c3, c4}, S1 = {s4, s5} andS2 = {s1, s2, s3, s6, s7}where qc1 = 3, qc2 = 2,
and qc3 = qc4 = 1. The preferences of colleges over students are responsive. Table 7 summarizes the
preference relation of each agent in this environment:

Also assume that {s4, s5, s6} �c1 {s1, s2, s3} as before. Notice there is a unique statically stable
matching in this environment:

µC(∅) ≡ {(c1; s1, s2, s3), (c2, s6), (c3, s4), (c4, s5), (∅, s7)} ≡ µS(∅)

where µi is the -i- offering deferred acceptance algorithm, which delivers the -i- optimal stable matching
given a static environment, for i ∈ {S, C}. Now consider first period matching m1 ≡

{
(c1; s4, s5)

}
.
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c1 c2 c3 c4 s1 s2 s3 s4 s5 s6 s7
s6 s1 s4 s5 c1 c1 c1 c4 c3 c2 c3
s1 s2 s7 s4 c2 c2 c2 c1 c1 c1 ∅
s2 s3 s5 c3 c4
s3 s6 ∅
s4 ∅
s5

Table 7: Preferences of Colleges and Students - Example A.3

Givenm1, there is a unique stable matching in the second period:

µS(m1) ≡ {(c1; s4, s5, s6), (c2, s1, s2), (c3, s7), (c4, ∅), (∅, s3)} ≡ µC(m1)

Thus the statically stable matching (∅, µS) ≡ (∅, µC) is blocked by {c1, s4, s5} in the 1st period with
m1 ≡

{
(c1; s4, s5)

}
, no matter which stable matching algorithm will be used in the second period. Notice

both (m1, µ
S) and (m1, µ

C) are blocked by {c5, s4} at t = 1 with m̃1 :≡ {(c1, s5), (c5, s4)}.

B Appendix: Non-Existence

Proposition B.1. There exists a dynamic many-to-one matching environment where every agent is suf-
ficiently patient, and dynamically stable matching does not exist, unlike dynamic one-to-one matching
markets.

Proof of Proposition B.1. The proof is by a counterexample. Example below shows there is
no dynamically stable matching in our motivating example with slight revision: every agent is
slightly impatient i.e. the ranking over agents remains same but matching early with the same
partner is preferredwhenever it is possible, and every agent is in themarket from the beginning:

Example B.1. Let C = {c1, c2}, where qc1 = 3 and qc2 = 2. S1 = {s1, s2, s3, s4, s5, s6}, and S2 = ∅.
The preferences of colleges over students are responsive. Below is the preference relation of each agent in
this environment:
Also, let (s4, s5, s6) �c1 (s1, s2, s3), and µ−1(m1)(ci) �c µ′−1(m′1)(ci) whenever |µ−1(m1)(ci)| >
|µ′−1(m′1)(ci)| for any c ∈ {c1, c2}, as long as it respect responsive preferences. That is, matching with
more students is always strictly preferred by either of the colleges, whenever possible. Moreover, assume
that, every agent is slightly impatient. Let (c, t(c)) denote matching with c at period t(c). Then c �s c′

if and only if (c, 1) �s (c, 2) �s (c′, 1) �s (c′, 2); which states that the time preference of the students is
of secondary importance (Analogously defined for the colleges). Unlike Doval (2017), sufficient patience
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c1 c2 {si}i=1,...,5 s6
s6 s1 c1 c2
s1 s2 c2 c1
s2 s3
s3 s6
s4 ∅
s5

is not enough for the existence of dynamically stable matching in this environment. Here is a sketch of
why there is no dynamically stable matching in this environment:

i. Notice the unique statically stable matching m assigns (c1; s1, s2, s3) and (c2; s6). This would not
be an outcome of a dynamically stable matching as (c1, c2, s4, s5) blocks in the first period with m̃1 ≡
{(c1; s4, s5), (c2, ∅)} and subsequent unique stablematchingµ(m̃1) ≡ {(c1; s4, s5, s6), (c2, s1, s2)}.

ii. Anymatchingwithm1(s) = ∅ 6= µ(m1)(s) for any s ∈ S1 is not dynamically stable as
(
µ(m1)(s), s

)
blocks by forming the match at period 1. To see this, notice that any outcome µ(m1)which has a part
that is formed in the second period is blockedwithm′1 ≡ µ(m1) by

{
µ(m1)(s), s

}
{s∈S|m1(s)=∅6=µ(m1)(s)}

.
Thus all the matchings has to form at the first period.20

iii. With ii. in hand, any (m1, µ) where µ(m1) is not statically stable is also not dynamically stable.
To see this, consider any (statically) blocking pair (c, s) to µ(m1). The same pair blocks (m1, µ) in
the first period withm′1 where

m′1(s) = c, m′1(ṡ) = m1(ṡ) = µ(m1)(ṡ) ∀ṡ 6= s.

Notice, since all the matchings form at t = 1, the continuation matching at this specific first period
matchingm′1 does not matter for c. Thus any incremental increase in the short run by c cannot be
offset via second period matchings. This is why there is not a dynamically stable matching in this
environment where everyone is in the market and everyone is slightly impatient.

Thus, for this environment, unlike dynamic one-to-one matching markets, dynamically stable matching
does not exist.

It is not an artifact of all the students arriving at t = 1. In fact, we do not need s3 to arrive
at t = 1, following example shows dynamically stable matching does not exists in this very
environment with a little revision; that is, S2 = {s3}.

20Only true for this specific example. This is always true for dynamic one-to-one matching environment, but not
necessarily for many-to-one set up.
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C Appendix: Tools to Compute Dynamic Group Stability

We construct artificial static and dynamic markets of a given dynamic many-to-one matching
market here.

C.1 Related Dynamic One-to-One Matching Market

Fix a dynamicmany-to-onematching environment Em. Nowwedefine the related dynamic one-
to-one matching environment Eo = (X̂ , Ŝ1, Ŝ2; %̂X , %̂S) where X̂ =

{
xci : c ∈ C, i = 1, . . . , qc

}
is the set of seat agents that corresponds to the set of colleges, and Ŝt = St for each t = 1, 2

are the sets of students as before. For each c ∈ C and each i ∈ {1, 2, . . . , qc}, %̂xci
=%c denotes

the preferences of seat agents, which is equivalent to the preferences of colleges. Thus %̂X =

{%̂xci
}xci∈X denotes the preference profile of seat agents. Similarly, %̂S = {%̂s}s∈S denotes the

preference profile of students defined by: for each s ∈ S,

i. xci%̂sx
c′
j if and only if c %s c

′, and

ii. xci%̂sx
c
j if and only if i ≤ j

Notice, the preference relation of students over seat agents is parallel to that of students over
colleges. Part i. states the following: all the seat agent of a higher ranked college are preferred
to those of a lower ranked college. Part ii., on the other hand, states that a lower indexed seat
agent is always strictly preferred to a higher indexed seat agent from the same college.

Given this mapping, there is a canonical mapping from (M1,M) in Em to (M̂1,M̂) in E0:

(i) if s, s′ ∈ (µ(m1))
−1({c}) and s %c s

′, then there exists i < j with µ̂(m̂1)(s) = xci and
µ̂(m̂1)(s

′) = xcj ,

(ii) if |(µ(m1))
−1({c})| = k < qc, then for each j > k, (µ̂(m̂1))

−1(xcj) = ∅,

(iii) ifm1(s) = c, then there exists j such that m̂1(s) = xcj .

Note that, one-to-one environment is a special case of many-to-one environment where qc =

1 for all c. Thus all the definitions apply to one-to-one environment as well, so feasibility is
preserved. Now we define the related static matching market in the following subsection.

C.2 Related Static Matching Market

Fix a dynamic many-to-one matching environment Em. Nowwe define the related static match-
ing environment Es = (C̃, S̃1, S̃2; %̃C, %̃S) where; C̃ = C denotes the set of colleges , and S̃1 = ∅
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and S̃2 = S1 ∪ S2 denotes the sets of students. Notice the market is collapsed to be static by
taking S1 as empty set. The rest remains same; that is, %̃C denotes the preferences of colleges
and %̃S denotes the preferences of students.

Given this mapping, there is a canonical mapping from (M1,M) in Em to (M̃1,M̃) in Es: for
each s ∈ S , µ(m1)(s) = µ̃(m̃1)(s). Notice that in the related static market M̃1 = {∅}. Thus, ef-
fectively the mapping is from (M1,M) to (∅,M̃), which is why Es is the related static matching
market. Note also that, one-to-one environment is a special case of many-to-one environment
where qc = 1 for all c. Thus analogous mapping applies to dynamic one-to-one matching mar-
kets as well.

C.3 Illustrative Example - Related Dynamic One-to-One Market

Given the original dynamic many-to-one matching market on page 7, we construct the related
dynamic one-to-one market. Let (x1, x2, x3) denote the seat-agents for c1, and (y1, y2) denote
the seat-agents for c2. Then the related dynamic one-to-one market is the following: X̂ =

{x1, x2, x3, y1, y2}, Ŝ1 = {s1, s2, s3, s4, s5}, and Ŝ2 = {s6}, with the preference relation as in ta-
ble 8:

x1 x2 x3 y1 y2 s1 s2 s3 s4 s5 s6
s6 s6 s6 s1 s1 x1 x1 x1 x1 x1 y1
s1 s1 s1 s2 s2 x2 x2 x2 x2 x2 y2
s2 s2 s2 s3 s3 x3 x3 x3 x3 x3 x1
s3 s3 s3 s6 s6 y1 y1 y1 y1 y1 x2
s4 s4 s4 ∅ ∅ y2 y2 y2 y2 y2 x3
s5 s5 s5

Table 8: Preferences in the Related one-to-one Market

Now, consider (m̂1, µ̂) in the related one-to-one dynamic matching market where;

m̂1 :≡
{
(x1, s1), (x2, s2), (x3, s3), (y1, ∅), (y2, ∅), (∅, s4), (∅, s5)

}
, µ̂( ˆ̇m1) = µ̂S( ˆ̇m1)

where µ̂S denotes the student offering deferred acceptance mechanism, given ˆ̇m1. Notice that
given m̂1, agents who are available in period 2 are X̂ (m̂1) = {y1, y2, y3} and Ŝ(m̂1) = {s4, s5, s6},
and thus there is a unique stable matching in the second period, µ̂(m̂1):

µ̂(m̂1) :≡
{
(x1, s1), (x2, s2), (x3, s3), (y1, s6), (y2, ∅), (∅, s4), (∅, s5)

}
.

Notice there is no contemporary pair of agents who prefer each other as opposed to the ones
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assigned by µ̂(m̂1). Moreover, no agent has incentive towait neither individually nor as a group,
given µ̂.21 Thus (m̂1, µ̂) is dynamically pairwise stable, and by proposition 4.2, it is dynamically
stable, too. Now, the corresponding matching in the original dynamic many-to-one matching
market would be (m1, µ)where;

m1 :≡
{
(c1; s1, s2, s3), (c2; ∅), (∅, s4), (∅, s5)

}
, µ(m1) :≡

{
(c1; s1, s2, s3), (c2; s6), (∅, s4), (∅, s5)

}
,

and µ is the student offering deferred acceptancemechanism. Notice, (m1, µ) is not dynamically
group stable in the original market due to the strategic manipulation in the first period that we
identified earlier. That is, {c1, s4, s5} is a period-1 block for (m1, µ) with m̃1 ≡

{
(c1; s4, s5)

}
.

To see this, notice there is a unique stable matching in the second period, given m̃1; that is,
µ(m̃1) :≡

{
(c1; s4, s5, s6), (c2; s1, s2)

}
.

Since c1 strictly prefers {s4, s5, s6} to {s1, s2, s3}, and s4 as well as s5 strictly prefer c1 to being
unmatched, (m1, µ) is not dynamically group stable. Thus, related dynamic one-to-one does not
predict a group stable outcome of the original many-to-one market for this specific example.

Remark C.1. The blocking coalition requires two seats in c1; namely {x2, x3}, to be matched with worse
students; namely {s4, s5}, as opposed to what related one-to-one suggests; that is {s2, s3}. In other words,
c1 is willing to be a part of such a coalition even though it loses in some seats, because there is a larger
gain for itself via another seat.

Such a blocking coalition would not arise in related dynamic one-to-one market as {x2, x3}
become strictly worse off.

D Appendix: Some Intermediate Results

D.1 Useful Lemmas

LemmaD.1. Fix some Em where preferences are strict, transitive and responsive. There exists a period-2
blocking coalition for (m1, µ) if and only if there exists a period-2 blocking pair for (m1, µ).

Proof of Lemma D.1. Note, if there is a pair that blocks (m1, µ)withm′2 then there exists a coalition
that does the same. We show the converse. For that, suppose the coalition (C, S) blocks (m1, µ)

with m′2. Then either (C = ∅ or S = ∅), or (C 6= ∅ and S 6= ∅). First suppose that C = ∅. Then
by definitionm′2(s) = ∅ �s µ(m1)(s) for s ∈ S. Hence, (µ(m1)(s), s) is an individually irrational

21Even though there are many other dynamically stable matchings in the related one-to-one market, they are all
outcome equivalent to µ̂(m̂1).
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pair and (∅, s) is a period 2 blocking pair for (m1, µ). A similar argument follows for the case:
C = ∅.

Nowassume (C 6= ∅ andS 6= ∅). Fix some c ∈ C. Wewill show two facts. Firstµ(m1)
−1({c})\

(m′2)
−1({c}) ⊆ S(m1) and (m′2)

−1({c}) \ µ(m1)
−1({c}) ⊆ S(m1). Second, there exists s′ ∈

µ(m1)
−1({c}) \ (m′2)−1({c}) and s ∈ (m′2)

−1({c}) \ µ(m1)
−1({c}) such that s �c s′. If these hold

then (c, s) is a period 2 blocking pair such that

• c ∈ C(m1) and s ∈ S(m1),

• m′′2(s) = c, and

• c �s µ(m1)(s) and (m′′2)
−1({c}) �c µ(m1)

−1({c})

where (m′′2)−1({c}) =
(
µ(m1)

−1({c}) \ {s′} ∪ {s}
)
.

Nowwemust show the two facts. Note that, sincem′2 �c µ(m1), (m′2)−1({c}) 6= µ(m1)
−1({c}).

Thus either (m′2)−1({c}) ⊂ µ(m1)
−1({c}) or (m′2)−1({c}) 6⊂ µ(m1)

−1({c}). If former holds, then
there exists s̃ ∈ µ(m1)

−1({c}) \ (m′2)−1({c}) such that ∅ �c s̃, by responsive and transitive pref-
erences. Therefore (c, s̃) is an individually irrational pair and (c, ∅) is a period 2 blocking pair
for (m1, µ).

Now suppose (m′2)−1({c}) 6⊂ µ(m1)
−1({c}). Therefore, (m′2)−1({c})\µ(m1)

−1({c}) is nonempty.
Moreover, since (C, S) inducesm′2, it follows that (m′2)−1({c})\µ(m1)

−1({c}) ⊆ S, andµ(m1)
−1({c})\

(m′2)
−1({c}) ⊆ S(m1). To see this, first fix s ∈ (m′2)

−1({c}) \ µ(m1)
−1({c}). If s 6∈ S then

m′2(s) ∈ {µ(m1)(s), ∅}. By definition, m′2(s) = c 6= µ(m1)(s) and certainly m′2(s) = c 6= ∅. As
such s ∈ S. Hence, (m′2)−1({c})\µ(m1)

−1({c}) ⊆ S, which implies (m′2)−1({c})\µ(m1)
−1({c}) ⊆

S(m1) as S ⊆ S(m1). For the latter, notice that if µ(m1)
−1({c}) \ (m′2)−1({c}) = ∅ then clearly

µ(m1)
−1({c}) \ (m′2)−1({c}) ⊆ S(m1). Let µ(m1)

−1({c}) \ (m′2)−1({c}) be nonempty. Fix s′ ∈
µ(m1)

−1({c}) \ (m′2)−1({c}). If s′ 6∈ S(m1), then m1(s
′) 6= ∅, which implies m′2(s′) = m1(s

′) =

µ(m1)(s
′), otherwise (m1,m

′
2) would not be a feasible matching. This contradicts with the as-

sumption that s′ ∈ µ(m1)
−1({c}) \ (m′2)−1({c}). This proves the first fact.

To show the second fact, notice that either |µ(m1)
−1(c)| = qc or |µ(m1)

−1(c)| < qc. We will
consider these cases separately.

Case 1: Assume |µ(m1)
−1(c)| = qc. Note |(m′2)−1({c}) \ µ(m1)

−1({c})| ≤ |µ(m1)
−1({c}) \

(m′2)
−1({c})|. Otherwise |(m′2)−1({c})| > |µ(m1)

−1(c)| = qc, contradicting with the fact that m′2
is a matching. Moreover, there exists s′ ∈ µ(m1)

−1({c}) \ (m′2)−1({c}) and s ∈ (m′2)
−1({c}) \

µ(m1)
−1({c}) such that s �c s′. To see this, assume otherwise i.e. s′ %c s for all s ∈ (m′2)

−1({c})\
µ(m1)

−1({c}) and s′ ∈ µ(m1)
−1({c})\ (m′2)−1({c}). Define Ŝ = µ(m1)

−1({c})∩ (m′2)−1({c}). Con-
sider s′1 ∈ µ(m1)

−1({c})\(m′2)−1({c}), and s1 ∈ (m′2)
−1({c})\µ(m1)

−1({c}). Notice by responsive
preferences s′1 �c s1 implies Ŝ∪{s′1} �c Ŝ∪{s1}. Now consider s′2 ∈ µ(m1)

−1({c})\(m′2)−1({c}),
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and s2 ∈ (m′2)
−1({c})\µ(m1)

−1({c})where s′2 6= s′1 and s2 6= s1. Again, by responsive preferences
and the transitivity s′2 �c s2 implies Ŝ ∪ {s′1, s′2} �c Ŝ ∪ {s1, s2}. By repeated application of the
fact that preferences are responsive and transitive would imply µ(m1)

−1({c}) �c (m′2)
−1({c}),

which contradicts with the fact thatm′2 �c µ(m1).
Thus there exists s′ ∈ µ(m1)

−1({c}) \ (m′2)−1({c}) and s ∈ (m′2)
−1({c}) \ µ(m1)

−1({c}) such
that s �c s′. Notice responsive preferences imply that s �c s′ if and only if

(
µ(m1)

−1({c}) \
{s′} ∪ {s}

)
�c µ(m1)

−1({c}). Therefore the pair (c, s) blocks (m1, µ) at period 2 with m′′2 where
m′′2(s) = c andm′′2(s′) = ∅ and for any s̈ 6∈ {s, s′},m′′2(s̈) = µ(m1)(s̈)

Case 2: Assume |µ(m1)
−1(c)| < qc. Since s ∈ S, c �s µ(m1)(s). Also s �c ∅, otherwise

m′2 would not be individually rational. Since preferences are responsive and s 6∈ µ(m1)
−1({c})

,
(
µ(m1)

−1({c}) ∪ {s}
)
�c µ(m1)

−1({c}). So the pair (c, s) blocks (m1, µ) at period 2 with m′′2
wherem′′2(s) = c andm′′2(s̈) = µ(m1)(s̈) for any s̈ 6= s.

Fix a many-to-one dynamic matching environment Em and the pair (m1, µ) on Em. Define
the related one-to-one dynamic matching environment Eo and corresponding pair (m̂1, µ̂) on
Eo, as in page 36.

Lemma D.2. There exists a period 2 blocking pair for (m1, µ) in Em if and only if there exists a period 2
blocking pair for corresponding (m̂1, µ̂) in Eo.

Proof of Lemma D.2. Let the pair (c, s) block (m1, µ) in period 2. Then c �s µ(m1)(s) and either
there exists s′ ∈ µ(m1)

−1({c}) ∩ S(m1) such that
(
µ(m1)

−1({c}) \ {s′} ∪ {s}
)
�c µ(m1)

−1({c})
or
(
µ(m1)

−1({c}) ∪ {s}
)
�c µ(m1)

−1({c}). By responsive preferences either s �c s′ or s �c ∅.
We will show these cases separately, but first note that µ̂(m̂1)(s

′) = xci for some i, and also
µ(m1)(s) ∈ {c′, ∅} for some c′ 6= c.

Suppose the former i.e. there exists s′ ∈ µ(m1)
−1({c}) ∩ S(m1) such that

(
µ(m1)

−1({c}) \
{s′} ∪ {s}

)
�c µ(m1)

−1({c}), that is s �c s′. Also c �s µ(m1)(s) and µ(m1)(s) ∈ {c′, ∅} implies
c �s c′. Recall from the mapping on page 36 that c �s c′ implies xci �s xc

′
j for any i and j thus

xci �s µ̂(m̂1)(s). Also s �c s′ implies that s �xci s
′ = µ̂(m̂1)

−1(xci). Therefore (xci , s) is a period 2
blocking pair to corresponding (m̂1, µ̂).

Now suppose
(
µ(m1)

−1({c}) ∪ {s}
)
�c µ(m1)

−1({c}). Then note that |µ(m1)
−1({c})| < qc,

otherwise |
(
µ(m1)

−1({c}) ∪ {s}
)
| > qc contradicting with quota restriction. But recall from the

mapping on page 36 that if |µ(m1)
−1({c})| < qc then µ̂(m̂1)

−1(xck) = {∅} for some k ≤ qc. Since
s �c ∅, s �xck ∅ = µ̂(m̂1)

−1(xck). But also remember that xck �s µ̂(m̂1)(s). Thus, (xck, s) is a period
2 blocking pair to corresponding (m̂1, µ̂).

Now, let the pair (xci , s) block (m̂1, µ̂) in period 2. Then xci �s µ̂(m̂1)(s) and s �xci µ̂(m̂1)
−1({xci}).

First notice it can not be the case that µ̂(m̂1)(s) = xcj for some j. To see this, suppose it were the
case that µ̂(m̂1)(s) = xcj for some j. Recall from page 36 that xci �s xcj for all j > i. Thus it
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has to be the case that j > i. But then µ̂(m̂1)
−1({xci}) �c µ̂(m̂1)

−1({xcj}) = s which implies
µ̂(m̂1)

−1({xci}) �xci s, contradicting with the fact that s �xci µ̂(m̂1)
−1({xci}). Thus µ̂(m̂1)(s) ∈

{xc′j , ∅} for some c′ such that xci �s xc
′
j . With c 6= c′ inmind, xci �s µ̂(m̂1)(s) implies c �s µ(m1)(s).

Also, notice that s �xci µ̂(m̂1)
−1({xci}) implies that µ̂(m̂1)

−1({xci}) ∈ {s′, ∅} for some s′ such
that s �xci s

′. But then s �c s′. Since the preferences are responsive,
(
µ(m1)

−1({c})\{s′}∪{s}
)
�c

µ(m1)
−1({c}) as s �c s′. Therefore, (c, s) is a blocking pair for (m̂1, µ̂).

It is quite easy to adopt the proof above to the case where either c = ∅ or s = ∅, which we
consider as a pairwise block.

Lemma D.3. Consider a many-to-one dynamic matching environment where preferences do not exhibit
cycle. Let coalition A blockm1 withm′1, given stable µ at every m̃1. Then A blocksm1 withm′′1 given µ
wherem′′1 is defined as follows: for any s ∈ S,

m′′1(s) =
{ m1(s) if µ(m′1)(s) = µ(m1)(s)

m′1(s) otherwise

Proof of Lemma D.3. First need to show that the coalitionA can deviate fromm1 tom′′1, by know-
ing that A can deviate tom′1. Notice the following, for all s ∈ S1 such that µ(m′1)(s) = µ(m1)(s)

we have that s /∈ A.
Assume for contradiction that A cannot induce m′′1 from m1. If so then at least one of the

followings must be true:

i. for some s ∈ A,m′′1(s) 6∈ A ∪ {∅}

ii. for some s 6∈ Awithm1(s) 6∈ A,m′′1(s) = m1(s)

iii. for some s 6∈ Awithm1(s) ∈ A,m′′1(s) 6∈ {m1(s), ∅}.

Since A can inducem′1 fromm1 we know that for all s ∈ S, µ(m1)(s) 6= µ(m′1)(s) thusm′′1(s) =
m′1(s) ∈ C ∪ {∅}, which rules i. out. Also, for all s 6∈ A with m1(s) 6∈ A, we have that m′1(s) =
m1(s) = m′′1(s) which rules ii. out. Now assume that iii. holds i.e. for some s 6∈ A with
m1(s) ∈ A, m′′1(s) 6∈ {m1(s), ∅}. But then m′′1(s) 6= ∅ and m′′1(s) 6= m1(s), which implies s ∈ A;
contradiction. Thus A can inducem′′1 fromm1.

Now we show that µ(m′1) = µ(m′′1), given stable µ. To show this, we will use a result from
static matching environment by Romero-Medina and Triossi (2013) which states: the stable
matching in an environment with no simultaneous cycle in the preferences is unique. Our cycle
definition coincides with their simultaneous cycle notion, which allows us to adapt their result
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here: By Romero-Medina and Triossi (2013), both µ(m′′1), and µ(m′1) are unique, given no cycle
in the preferences.22

First notice that C(m′′1) ∪ S(m′′1) ⊆ C(m′1) ∪ S(m′1). Assume for contradiction that µ(m′1) 6=
µ(m′′1). This implies µ(m′1)(s) 6= µ(m′′1)(s) for some s ∈ S(m′′1). To see this, notice that for all s
such thatm′1(s) 6= ∅,m′1(s) = m′′1(s), which implies µ(m′1)(s) = µ(m′′1)(s) for such s. Also, for all
s such thatm′1(s) = ∅ 6= m1(s), and µ(m′1)(s) = µ(m1)(s), we havem′′1(s) = m1(s), which implies
µ(m′′1)(s) = µ(m1)(s) = µ(m′1)(s). Therefore, µ(m′1) 6= µ(m′′1) implies µ(m′1)(s) 6= µ(m′′1)(s) for
some s ∈ S(m′′1).

The unique stable matching on C(m′′1) ∪ S(m′′1) is µ(m′′1), thus µ(m′1)|C(m′′1 )∪S(m′′1 ); that is the
part of µ(m′1) restricted only on C(m′′1) ∪ S(m′′1), is not stable over C(m′′1) ∪ S(m′′1). Therefore
there exist a pair (c, s) ∈ C(m′′1) ∪ S(m′′1)which blocks µ(m′1)|C(m′′1 )∪S(m′′1 ). But, notice that (c, s) ∈
C(m′1)∪S(m′1), thus (c, s) is a blocking pair also for µ(m′1) over C(m′1)∪S(m′1), which contradicts
with the stability of µ(m′1) over C(m′1)∪S(m′1). Thus µ(m′1) = µ(m′′1). This finishes the proof

Lemma D.4. Consider a one-to-one dynamic matching environment Eo ≡ (X ,S1,S2;%X ,%S). If pref-
erences do not exhibit any cycle we have the following: for any dynamically stable matching (m1, µ), for
any x ∈ X and s ∈ S if s �x µ(m1)(x) then µ(m1)(s) �s x.

Proof of Lemma D.4. We will prove this lemma through contradiction. Let (m1, µ) be a dynam-
ically stable matching in an arbitrary dynamic one-to-one matching environment. Assume for
contradiction that µ(m1)(s

0) = x0 for some x0 ∈ X and there exists s1 such that x0 �s1 µ(m1)(s
1)

and s1 �x0 s0 = µ(m1)
−1(x0). Thus we have the following: m−11 (x0) = s0 6= ∅ and s1 ∈ S2.

Otherwise, (x0, s1)would be a pairwise block for (m1, µ) at some period t = 1, 2.
Consider alternative first periodmatchingm′1 wherem′1(s) = m1(s) if s 6= s0, andm′1(s0) = ∅.

Dynamic stability of (m1, µ) implies that µ(m′1)(s0) = x0. Again application of dynamic stability
of (m1, µ) implies thatµ(m′1)(s1) �s1 x0, otherwise (x0, s1)would be a period-2 pairwise block for
(m1, µ) atm′1. Let µ(m′1)(s1) = x1. Given that µ is stable atm1, we must have µ(m1)

−1(x1) �x1 s1.
Let µ(m1)

−1(x1) = s2. Following this argument yields the sequence:

µ(m′1)(s
1) = x1 �s1 x0 = µ(m1)(s

0), µ(m′1)(s
i) = xi �si xi−1 = µ(m1)(s

i) for all i ≥ 2

and µ(m1)
−1(xi) = si+1 �xi si = µ(m′1)(x

i) for all i ≥ 1.

Now we will show that sj = s1 for some j ≥ 3. First notice that we have finitely many students
22Notice that µ(m′′1), and µ(m′1) are second period matchings among the available agents C(m′′1) ∪ S(m′′1), and

C(m′1) ∪ S(m′1), respectively. It is also immediate to see that if the preferences over C ∪ S do not include cycle, so
don’t the preferences over any restricted population C ∪ S ⊂ C ∪ S.
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which implies that si = sj for some i 6= j. Wlog let j > i ≥ 1. Then we have the followings:

µ(m1)(s
j) = xj−1 = µ(m′1)(s

j−1)
...

µ(m1)(s
i+1) = xi = µ(m′1)(s

i)
...

µ(m1)(s
2) = x1 = µ(m′1)(s

1)

Notice si = sj implies xi−1 = xj−1 which implies si−1 = sj−1. Repeated application of this
argument yields that xj−(i−1) = x1 and sj−(i−1) = s1, thus we have sj−i+1 = s1. Now, we need to
show that j − i ≥ 2. To see this, assume for contradiction that j = i+ 1. Then µ(m1)(s

i) = xi−1

and µ(m1)(s
i+1) = xi as well as si = si+1 implies that xi = xi−1. Then we have µ(m′1)(si) = xi =

µ(m1)(s
i) contradicting with µ(m′1)(si) �si µ(m1)(s

i). Therefore j ≥ i + 2, which gives us the
preference cycle < s1x1s2 · · ·xj−isj−i+1 > where s1 = sj−i+1. This is a contradiction for our no
cycles in preferences assumption, which finishes the proof.

Consider a dynamic matching (m1, µ) on Em. It is helpful to relabel the students matched
under (m1, µ) as in the following order:

(µ(m1))
−1({c}) = (sc1 , sc2 , . . . , scqc ) where sc1 %c sc2 %c . . . %c scqc

Note that if |(µ(m1))
−1({c})| = k < qc then scj ≡ ∅ for all j > k. Analogously relabel (µ(m′1))−1({c})

as (s′c1 , s
′
c2
, . . . , s′cqc ) for anym

′
1 ∈M1 given µ.

Lemma D.5. Let (m̂1, µ̂) be a dynamically stable matching of the related one-to-one matching market
and (m1, µ) be the corresponding dynamic matching in the original many-to-one matching market. Let
C ∪ S block (m1, µ) with m′1 at t = 1. Then we have the following: for each c ∈ C, there exists some
s′ck ∈ (µ(m′1))

−1({c})\ (µ(m1))
−1({c}) such that s′ck �c sck . Moreover, if preferences do not exhibit any

cycle, then µ(m1)(s
′
ck
) �s′ck c for any such s

′
ck
.

Proof of Lemma D.5. By responsive preferences, there exists some s′ck ∈ µ(m
′
1)(c) such that s′ck �c

sck , otherwise, (m1, µ) %c (m
′
1, µ) contradictingwith c ∈ C. Nowwe need to show s′ck 6∈ µ(m1)(c)

for at least one such s′ck . To show this, pick one such s′ck i.e. s′ck �c sck . If s
′
ck
6∈ (µ(m1))

−1({c}),
then we are done, if s′ck ∈ (µ(m1))

−1({c}), then s′ck = scj for some j < k. Notice s′cj �c s
′
ck

= scj
which implies s′cj �c scj . If s

′
cj
6∈ (µ(m1))

−1({c}), then we are done, if s′cj ∈ (µ(m1))
−1({c}), then

s′cj = sci for some i < j. Following these steps, one can go up-most to the case s′cn = sc1 for some
n > 1, which implies s′c1 �c sc1 , and clearly s′c1 6∈ (µ(m1))

−1({c}). This proves the first part.
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To see µ(m1)(s
′
ck
) �s′ck c first notice that (µ̂(m̂1))

−1(xck) = sck and s′ck �c sck implies s′ck �xck sck .
By lemma D.4 it follows that µ̂(m̂1)(s

′
ck
) �s′ck x

c
k. Given that s′ck 6∈ (µ(m1))

−1({c}) we have the
following µ̂(m̂1)(s

′
ck
) = xc

′
j for some c′ such that c′ �s′ck c. But then µ̂(m̂1)(s

′
ck
) = xc

′
j implies that

µ(m1)(s
′
ck
) = c′ �s′ck cwhich completes the proof

Lemma D.6. Let (m1, µ) be a dynamically group stable matching of the original many-to-one matching
market where preferences are strict, transitive and do not exhibit cycles. The followings hold:

i. If c �s µ(m1)(s) then s̃ �c s for any s̃ ∈ S(m1) ∩ (µ(m1))
−1({c}).

ii. Letm1(s̃) = c for some s̃ ∈ S1. Then s̃ �c s for all s ∈ S(m1) such that c �s µ(m1)(s).

Proof of Lemma D.6. We will prove part i. and ii. separately.
Proof of Part i. Let (m1, µ) be dynamically group stablematchingwhere c �s µ(m1)(s). Note

that eitherm1(s) = ∅ orm1(s) = ĉ 6= ∅. Ifm1(s) = ∅, then stability of µ atm1 implies that s̃ �c s
for any s̃ ∈ S(m1) ∩ (µ(m1))

−1({c}).
Let m1(s) = ĉ 6= ∅, and assume for contradiction that s �c s for some s ∈ S(m1) ∩

(µ(m1))
−1({c}). Consider m′1 where m′1(s) = ∅ and m′1(ṡ) = m1(ṡ) for all ṡ 6= s. Dynamic

group stability of (m1, µ) implies µ(m1)(s) = ĉ %s µ(m
′
1)(s) and µ(m1)(ĉ) %ĉ µ(m

′
1)(ĉ). Consider

also the following matching among C(m′1) ∪ S(m′1) = C(m1) ∪ S(m1) ∪ {ĉ, s}:

η2 ≡ (ĉ, s) ∪ µ(m1)|C(m1)∪S(m1)

Notice η2 is not stable over C(m′1) ∪ S(m′1) since (c, s) is a pairwise block; that is, c �s η2(s) and
s �c s ∈ (η2)

−1({c}) implies {c, s} blocks η2. The Strong Stability Property (Demange, Gale, and
Sotomayor) implies the following: there exists a stable matching η̃2 over C(m′1) ∪ S(m′1) such
that η̃2(s) %s η2(s) = µ(m1)(s) and ŝ %c s ∈ (η2)

−1({c}) for all ŝ ∈ (η̃2)
−1({c}).

But notice that there is unique stable matching over C(m′1) ∪ S(m′1); therefore

η̃2 = µ(m′1)|{C(m′1)∪S(m′1)}.

With µ(m1)(s) = ĉ %s µ(m
′
1)(s) and µ(m′1)(s) %s µ(m1)(s) = ĉ in mind, the strict preferences

yield µ(m′1)(s) = ĉ.
Given µ(m′1)(s) = ĉ and µ is stable at m′1, we have that µ(m′1)(s) 6= c since s �c s and

c �s µ(m′1)(s). Therefore µ(m1)|{C(m1)∪S(m1)} 6= µ(m′1)|{C(m1)∪S(m1)} and both µ(m1)|{C(m1)∪S(m1)}

and µ(m′1)|{C(m1)∪S(m1)} are stable over C(m1)∪S(m1) contradictingwith the uniqueness of stable
matching under a-cyclic preferences (see Romero-Medina and Triossi (2013).). This finishes the
proof of part i.
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Proof of Part ii. We will use contradiction i.e. let (m1, µ) be dynamically stable matching
where m1(s̃) = c for some s̃ ∈ S1 and there exists some s ∈ S(m1) such that c �s µ(m1)(s).
Assume for contradiction that s �c s̃. We will show that there exists a preference cycle

Notice that ŝ �c s for each nonempty ŝ ∈ S(m1) ∩ (µ(m1))
−1({c}). Consider m′1 where

m′1(s̃) = ∅ and m′1(ṡ) = m1(ṡ) for all ṡ 6= s̃. Dynamic stability of (m1, µ) implies µ(m1)(s̃) %s̃

µ(m′1)(s̃) = c and (µ(m1))
−1({c)} %c (µ(m

′
1))
−1({c}).

Let (µ(m1))
−1({c)} ≡ m−11 ({c})∪m−12,2({c})wherem−12,2({c}) = S(m1)∩ (µ(m1))

−1({c}). Write
m−12,2({c}) as (sc1 , sc2 , . . . , scn) such that sci �c scj for i < j and n < qc. Thus scn �c s implies
|(µ(m1))

−1({c})| = qc. Let qm1
c = qc − |m−11 ({c})| ≡ n. Notice that qm

′
1

c = qm1
c + 1. Then define

analogously (µ(m′1))
−1({c)} ≡ m′−11 ({c}) ∪m′−12,2 ({c})wherem′−12,2 ({c}) as (s′c1 , s

′
c2
, . . . , s′cn+1

)

Withm′−11 ({c}) ∪ {s̃} = m−11 ({c}) in mind, we have the following:

(µ(m1))
−1({c)} %c (µ(m

′
1))
−1({c}) ⇔ m−11 ({c}) ∪m−12,2({c}) %c m

′−1
1 ({c}) ∪m′−12,2 ({c})

⇔ m′−11 ({c}) ∪ {s̃} ∪m−12,2({c}) %c m
′−1
1 ({c}) ∪m′−12,2 ({c})

⇔ {s̃} ∪m−12,2({c}) %c m
′−1
2,2 ({c})

⇔ (sc1 , sc2 , . . . , scn , s̃) %c (s
′
c1
, s′c2 , . . . , s

′
cn+1

)

Notice µ(m1)(s̃) %s̃ µ(m
′
1)(s̃) implies either µ(m′1)(s̃) = µ(m1)(s̃) = c or c �s̃ µ(m′1)(s̃).

If µ(m′1)(s̃) = µ(m1)(s̃) = c then µ(m′1)|{C(m1)∪S(m1)} is also stable over C(m1) ∪ S(m1). Since
there is a unique stable matching over C(m1) ∪ S(m1) it must be that µ(m′1)|{C(m1)∪S(m1)} =

µ(m1)|{C(m1)∪S(m1)}. But notice s �c s̃ where s̃ ∈ S(m′1) ∩ (µ(m′1))
−1 and c �s µ(m′1)(s). Thus

(c, s) forms a pairwise block to µ at m′1, contradicting with stability of µ. Therefore µ(m′1)(s̃) =
µ(m1)(s̃) = c is not possible.

Now assume that c �s̃ µ(m′1)(s̃). Since µ is stable at m′1, we have the following: s′cn+1
�c s̃.

With (sc1 , sc2 , . . . , scn , s̃) %c (s′c1 , s
′
c2
, . . . , s′cn+1

) in mind, s′cn+1
�c s̃ and responsive preferences

imply that there exists sci ∈ m−12,2({c}) \m′−12,2 ({c}) such that sci �c s′ci .
Initial step: sci /∈ m′−12,2 ({c}), s′ci ∈ m

′−1
2,2 ({c}) and sci �c s′ci together imply m′2,2(sci) �sci c =

m2,2(sci). Let c1 ≡ m′2,2(sci). But c1 �sci c and m2,2(sci) = c implies that sc1 �c1 sci for all
sc1 ∈ m−12,2({c1}). Thus |(µ(m1))

−1({c1})| = qc1 . Also note that qm
′
1

c1 = qm1

c1 .
Given that |(µ(m1))

−1({c1})| = qc1 and q
m′1
c1 = qm1

c1 , we have the following: |m′−12,2 ({c1})| ≤
|m−12,2({c1})| = qm1

c1 . Since sci ∈ m′−12,2 ({c1}) \ m−12,2({c1}) there exists some sc1j ∈ m−12,2({c1}) \
m′−12,2 ({c1}). But then sc1j �c1 sci .

sc1j /∈ m′−12,2 ({c1}), sci ∈ m′−12,2 ({c1}) and sc1j �c1 sci together imply that m′2,2(sc1j ) �sc1j c1 =

m2,2(sc1j ). Let c
2 ≡ m′2,2(sc1j ). Note that we are back to initial step.

We can repeat this only finitelymany times. Thus following the logic from lemmaD.4, ci = cj

for some i ≤ j − 2, which leads to a preference cycle. It is a contradiction to our assumption of
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a-cyclic preferences. Therefore c �s̃ µ(m′1)(s̃) is not possible either.
With µ(m1)(s̃) %s̃ µ(m

′
1)(s̃) being not possible, we have that µ(m′1)(s̃) �s̃ µ(m1)(s̃), contra-

dicting with dynamic stability of (m1, µ). This finishes the proof of lemma D.6ii.

Lemma D.7. Let (m1, µ) be a dynamically group stable matching of the original many-to-one matching
market where preferences are strict, transitive and do not exhibit cycles. If c �s µ(m1)(s) then s̃ �c s for
any s̃ ∈ (µ(m1))

−1({c}).

Proof of Lemma D.7. Let c �s µ(m1)(s) and pick some s̃ ∈ (µ(m1))
−1({c}). First notice that if

s̃ ∈ S(m1), then lemma D.6i. implies s̃ �c s. Let µ(m1)(s) = ĉwhere c �s ĉ. Either s ∈ S(m1) or
s 6∈ S(m1) i.e. m1(s) = ĉ 6= ∅. If s ∈ S(m1) then lemma D.6ii. implies s̃ �c s.

Therefore the only case to show is the following: ṡ �c s for each ṡ ∈ S1 such that m1(ṡ) = c

and m1(s) = ĉ 6= ∅. Assume for contradiction that s �c s̃ for some s̃ where m1(s̃) = c. We will
show that there exists a preference cycle in this case. For that, we will make use of the steps
introduced in the proof of lemma D.6ii.

Now consider m′1 where m′1(s̃) = ∅, m′1(s) = c and m′1(ṡ) = m1(ṡ) for all ṡ /∈ {s, s̃}. Since
µ(m′1)(s) = c �s µ(m1)(s) = ĉ, dynamic stability of (m1, µ) implies the following: (µ(m1))

−1({c}) %c

(µ(m′1))
−1({c}). Note also the followings: C(m′1) = C(m1) ∪ {ĉ} and S(m′1) = S(m1) ∪ {s̃} with

q
m′1
ĉ = qm1

ĉ + 1 and qm
′
1

ċ = qm1
ċ for all ċ 6= ĉ; where qm1

c = qc − |m−11 ({c})|.
Sincem′−11 ({c})\m−11 ({c}) = {s} andm−11 ({c})\m′−11 ({c}) = {s̃}, s �c s̃ togetherwith respon-

sive preferences imply that m′−11 ({c}) �c m−11 ({c}). But then (µ(m1))
−1({c)} %c (µ(m

′
1))
−1({c})

implies thatm−12,2({c}) �c m′−12,2 ({c}), wherem−12,2({c}) = S(m1)∩(µ(m1))
−1({c}) and analogously

m′−12,2 ({c}). Notice that dynamic group stability of (m1, µ) implies the following: m2,2 and m′2,2
are stable over C(m1) ∪ S(m1) and C(m′1) ∪ S(m′1), respectively.

As in the proof of lemmaD.6.ii. relabelm−12,2({c}) = (sc1 , · · · , scn) andm′−12,2 ({c}) = (s′c1 , · · · , s
′
cn)

where n < qc. Since preferences are responsive,m−12,2({c}) �c m′−12,2 ({c}) implies that there exists
sci ∈ m−12,2({c}) \m′−12,2 ({c}) such that sci �c s′ci . Since sci �c s

′
ci
, and sci /∈ m′−12,2 ({c}), stability of

m′2,2 implies thatm′2,2(sci) �sci c. Notice sci 6= s̃ sincem2,2(sci) = cwhilem1(s̃) = c

Case 1: m′2,2(sci) = ĉ = m1(s). Thus we have ĉ �sci µ(m1)(sci). Then by lemma D.6.ii.
s �ĉ sci . Also lemma D.6.i. implies that sci �c s. Therefore we have the following preference
cycle: < c, sci , ĉ, s, c > contradicting with a-cyclic preferences assumption.

Case 2: m′2,2(sci) = c1 6= ĉ. Notice c1 �sci m2,2(sci) = c implies sc1 �c1 sci for all sc
1 ∈

m−12,2({c1}). Thus |m−12,2({c1})| = qm1

c1 and |m′−12,2 ({c1})| ≤ |m−12,2({c1})|. Given that sci ∈ m′−12,2 ({c1})\
m−12,2({c1}), there exists sc

1

j ∈ m−12,2({c1}) \m′−12,2 ({c1})where sc1j �c1 sci .
With µ being stable atm′1 inmind, sc1j �c1 sci implies thatm′2,2(sc

1

j ) �sc1j c1. We have following
three sub-cases:

i. m′2,2(sc
1

j ) = ĉ. Thus we have ĉ �
sc

1
j
c1 = µ(m1)(s

c1

j ). Then by lemma D.6.ii. s �ĉ sc
1

j . By
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our assumption: c �s ĉ. Also lemma D.6.i. implies that sci �c s. Again by assumption
in case 2: c1 � scic and sc

1

j �c1 sci . This stream leads to the following preference cycle:
< sc

1

j , ĉ, s, c, sci , c
1, sc

1

j >, contradicting with a-cyclic preferences assumption.

ii. m′2,2(sc
1

j ) = c. Thus we have c �
sc

1
j
c1 = µ(m1)(s

c1

j ). Since µ is stable at m1, sci �c sc
1

j . But
case 2 assumes that c1 �sci m2,2(sci) = c and sc1j �c1 sci . This results with the following
preference cycle: < sc

1

j , c, sci , c
1, sc

1

j > contradicting with a-cyclic preferences.

iii. m′2,2(sc
1

j ) = c2 /∈ {ĉ, c}. Note that we are back to Case 2. Therefore repeating the argu-
ment yields a preference cycle for every possible case as there is only finitely many agents
present in the environment.

This finishes the proof of lemma D.7

D.2 Proof of Proposition 4.2

Proof of Proposition 4.2. Wewill prove part i. through a contradiction. The proof of part ii. is via
a counterexample.
Proof of part i.
Assume qc = 1 for all c ∈ C. Let (m1, µ) be dynamically pairwise stable matching. Assume that
it is not dynamically group stable. Then, there exists some coalition (C, S) and some t = 1, 2

such that (C, S) blocks (m1, µ) with m′t. First suppose t = 2. Then by lemma D.1, there exists
some period 2 blocking pair for (m1, µ), contradicting with the fact that (m1, µ) is dynamically
pairwise stable.

Now suppose t = 1. Thus we have;

(i) for all s ∈ S, (m′1, µ) �s (m1, µ) and (ii) for all c ∈ C, (m′1, µ) �c (m1, µ)

First suppose that C = ∅. Then by definition; m′1(s) = ∅ for all s ∈ S, which implies m′1(s) ∈
{m1(s), ∅} = for all s ∈ S1. But then S is a period 1 blocking coalition for (m1, µ)withm′1 where
m′1(s) ∈ {m1(s), ∅} = for all s ∈ S1, contradicting with dynamic pairwise stability of (m1, µ).
Thus C 6= ∅. Similar argument follows for the case where S = ∅. Therefore, C 6= ∅ 6= S.

WithC 6= ∅ 6= S inmind, dynamic pairwise stability of (m1, µ) implies thatm′1(s) 6∈ {m1(s), ∅}
for some s ∈ S1. Let m′1(s) = c 6= m1(s). Then obviously s ∈ S and c ∈ C. Therefore
µ(m′1)(s) �s µ(m1)(s) and (µ(m′1)

−1({c})) �c (µ(m1)
−1({c})). Given qc = 1 and m′1(s) = c,

we have the followings: c �s µ(m1)(s) and s �c (µ(m1)
−1({c})). Thus (c, s) ∈ C × S1 is a period

1 blocking pair for (m1, µ), contradicting with dynamic pairwise stability of (m1, µ).
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Let (m1, µ) be dynamically group stable. Obviously (m1, µ) is dynamically pairwise stable
as well.
Proof of part ii.
The proof of part ii. is through a counterexample. Consider our illustrative example on page 7.
Here is a dynamically group stable matching in that environment: 7.

m1 = {(c1; s4, s5)}, µ(m̃1) = µS(m̃1) ∀m̃1 ∈M1

where µS denotes the student offering deferred acceptance algorithm, given m̃1. Notice that, µS

yields stable matching in the second period for any given first period matching m̃1. Thus, there
is no period-2 blocking coalition for (m1, µ). One needs to check whether there exists period-1
blocking coalition for (m1, µ). At m1, we have the following second period matching market:
C(m1) = {c1, c2} with qm1

c1
= 1 and qm1

c2
= 2 where qm1

c denotes the left over quota for c in period
2, given m1. Similarly, S(m1) = {s1, s2, s3, s4}. Given the preference relation by Table 1 and
Table 2, there is a unique stable matching;

µ(m1) = {(c1; s4, s5, s6), (c2; s1, s2), (∅, s3)}.

Notice that, for any other first period matching m̃1 6= m1, µ(m̃1)(s6) = c2. And thus, re-
sponsive preferences imply {s1, s2, s3} %c1 (µ(m̃1))

−1({c1}) for any m̃1 6= m1. Therefore c1 is not
willing to be a part of any first period blocking coalition as {s4, s5, s6} �c1 {s1, s2, s3}. Similarly,
{s1, s2} %c2 (µ(m̃1))

−1({c2}) for any m̃1 ∈M1, by responsive preferences. Thus, c2 is not willing
to be a part of any first period blocking coalition either.

Since neither college is willing to join any first period blocking coalition, s1, s2, and s3 are
not able to change first period matching. Although s4 and s5 can wait to be matched at period
2, for each s ∈ {s4, s5}, µ(m1) %s µ(m̃1) for any m̃1 ∈ M1. Therefore, neither s4 nor s5 is willing
to join any first period blocking coalition. Hence, (m1, µ) is dynamically group stable.

Note that (c1, si) for i = 1, 2 is a period 1 pairwise block for (m1, µ). Thus (m1, µ) is not
dynamically pairwise stable.

Now we find a dynamically pairwise stable matching in this environment and show that it
is not dynamically group stable. Consider (m̃1, µ); given by,

m̃1 = ∅, µ(ṁ1) = µS(ṁ1) ∀ṁ1 ∈M1

where, as before, µS denotes the student offering deferred acceptance algorithm, given ṁ1. Sim-
ilar to the case above, there is no period-2 blocking pair for (m̃1, µ). Notice s �c1 s′ for any
s ∈ (µ(m̃1))

−1({c1}), for each s′ ∈ {s4, s5}. Similarly, µ(m̃1)(s) �s c2 for each s ∈ {s1, s2, s3}.
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Lastly, ∅ �c2 s′ for each s′ ∈ {s4, s5}. Thus, there is no period 1 blocking pair for (m̃1, µ) either.
Therefore, (m̃1, µ) is dynamically pairwise stable.

Note that, {c1, s4, s5} is a period 1 blocking coalition for (m̃1, µ)withm′1 wherem′1 = {(c1; s4, s5)}.
Thus (m̃1, µ) is not dynamically group stable.

Therefore, pairwise dynamic stability is neither necessary nor sufficient for dynamic stability
in dynamic many-to-one matching markets.

E Appendix: Proofs for Section 5.2

Fix a dynamic many-to-one matching environment Em and the pair (m1, µ) on Em. Define the
related dynamic one-to-one matching environment Eo and corresponding pair (m̂1, µ̂) on Eo,
as in appendix C.1. Our next result provides conditions under which the set of dynamically
group stable matchings of the dynamic many-to-one matching market is equivalent to that of
the related dynamic one-to-one market. It is useful to form this link as results from dynamic
one-to-one market can be extended to dynamic many-to-one markets.

Theorem E.1. Fix Em such that the preferences are transitive, strict, responsive and there is no preference
cycle. Then, (m1, µ) is dynamically group stable if and only if (m̂1, µ̂) is dynamically stable.

E.1 Proof of Theorem E.1

Proof of Theorem E.1. We will do the proof of theorem E.1 separately for either directions via
following propositions:

Proposition E.1. Fix Em such that the preferences are transitive, strict, responsive and there is no pref-
erence cycle. If (m̂1, µ̂) is dynamically stable then (m1, µ) is dynamically group stable.

Proof of Proposition E.1. Suppose (m̂1, µ̂) is dynamically stable, and (m1, µ) is not dynamically
stable. We will show a contradiction. Since (m1, µ) is not dynamically stable, there exists some
coalition (C, S) and some t = 1, 2 such that (C, S) blocks (m1, µ) withm′t.

First suppose t = 2. Then by lemmaD.1, there exists some period 2 blocking pair for (m1, µ).
By lemmaD.2, there exists some blocking pair for (m̂1, µ̂), contradictingwith the fact that (m̂1, µ̂)

is dynamically stable.
Now suppose t = 1. Let A denote the coalition i.e. A = C ∪ S. Thus we have;

(i) for all s ∈ A (m′1, µ) �s (m1, µ) and (ii) for all c ∈ A (m′1, µ) �c (m1, µ)

We will proceed in two cases: first case states that no college seat becomes worse off for any
college in the coalition, as opposed to (m1, µ). To prove the first case, we show that there exists
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an equivalent block to (m̂1, µ̂) contradicting with dynamic stability of (m̂1, µ̂). The second case
involves a college in the coalition for which there exists a seat that becomes strictly worse off,
as opposed to (m1, µ). We show that there has to be a preference cycle for case two to arise,
contradicting with our assumption of a-cyclic preferences.

Case 1: (No Downgrade): For every c ∈ A, s′cj %c scj for all j and s′ci �c sci for some i.
Now considerm′′1 where

m′′1(s) =
{ m1(s) if µ(m′1)(s) = µ(m1)(s)

m′1(s) otherwise

By lemma D.3, A blocks (m1, µ) at t = 1 with m′′1 where µ(m′′1) = µ(m′1). Now we can write the
correspondingmatching m̂′′1 in Eo. Noticewehave the following (µ̂(m̂′′1))−1(xci) %xci

(µ̂(m̂1))
−1(xci)

for all i, for each c ∈ A. Consider the following coalition Â

Â ≡ {s ∈ A} ∪ {xci | c ∈ A, s′ci �c sci}

Therefore Â forms a blocking coalition to (m̂1, µ̂) at t = 1 with m̂′′1. It is left to show that Â can
deviate from m̂1 to m̂′′1. But it follows immediately from the fact that A can implement m′′1 and
if (m̂′′1)−1(xcj) 6= (m̂1)

−1(xcj) where (m̂′′1)
−1(xcj) = s′cj , then s

′
cj
�xcj scj = (µ̂(m̂1))

−1(xcj). It is a
contradiction to dynamic stability of (m̂1, µ̂), which finishes the prof of case 1.

Case 2: (Downgrade): For some c ∈ A, there exists j such that scj �c s′cj . We will show
that there exists a preference cycle in this case.

By lemma D.5, there exists s′ck ∈ (µ(m′1))
−1({c})/(µ(m1))

−1({c}) such that s′ck �c sck , and
µ(m1)(s

′
ck
) �s′ck c. Consequently, s

′
ck
6∈ A follows.

Knowing that µ(m′1)(s′ck) = c 6= µ(m1)(s
′
ck
) and s′ck 6∈ A, we have tha following: m′1(s′ck) = ∅.

To see this, notice that m′1(s′ck) ∈ {m1(s
′
ck
), ∅} as s′ck 6∈ A. If m1(s

′
ck
) 6= ∅ then m1(s

′
ck
) = m′1(s

′
ck
)

implying that µ(m′1)(s′ck) = µ(m1)(s
′
ck
). This contradicts with the fact that s′ck ∈ (µ(m′1))

−1({c})\
(µ(m1))

−1({c}). Thusm′1(s′ck) = ∅. First notice that (m1, µ) has no period-2 blocking coalitions.
Initial Step: Denote µ(m1)(s

′
ck
) = c0. Notice c0 6= ∅ since c0 �s′ck µ(m′1)(s

′
ck
) ≡ c �s′ck ∅.

Last inequality follows from the fact that (m1, µ) has no period-2 blocking coalitions. More-
over, |(µ(m′1))−1({c0})| = qc0 , otherwise (c0, s′ck) would form a second period block to µ at m′1.
Moreover, stability of µ atm′1 implies one of the followings:

1. |(m′1)−1({c0})| = qc0 so c0 is not available in period 2; that is c0 6∈ C(m′1), or

2. |(m′1)−1({c0})| < qc0 and s �c0 s′ck for each s ∈ (µ(m′1))
−1({c0}) \ (m′1)−1({c0})

Notice that 2 is implied both by stability of µ atm′1 as well as the responsive preferences.
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Firstwewill show that 1 cannot arise. To see this, assume for contradiction that 1 holds. Then
(m′1)

−1({c0}) = (µ(m′1))
−1({c0}) 6= (µ(m1))

−1({c0}). Thus |(m′1)−1({c0})| = qc0 and (m′1)
−1({c0}) 6=

(m1)
−1({c0}) together imply that (m′1)−1({c0}) \ (m1)

−1({c0}) is nonempty. Thus c0 ∈ A. Since
c0 ∈ A, (µ(m′1))−1({c0}) �c0 (µ(m1))

−1({c0}). By lemmaD.5, there exists some s′
c0t
∈ (µ(m′1))

−1({c0})\
(µ(m1))

−1({c0}) such that s′
c0t
�c0 sc0t and µ(m1)(s

′
c0t
) �s′

c0t

c0 = µ(m′1)(s
′
c0t
), which implies s′

c0t
6∈ A.

Since s′
c0t
6∈ A, we have thatm′1(s′c0t ) = ∅, which contradictswith the fact that s′

c0t
∈ (µ(m′1))

−1({c0}) =
(m′1)

−1({c0}). Thus 1 does not hold.
Now we will show if 2 holds, then there exists a preference cycle. For that, assume 2 holds.

Knowing that |(µ(m′1))−1({c0})| = qc0 , and (µ(m′1))
−1({c0}) 6= (µ(m1))

−1({c0}) since

s′ck ∈ (µ(m1))
−1({c0}) \ (µ(m′1))−1({c0})

wehave (µ(m′1))−1(c0)\(µ(m1))
−1(c0) 6= ∅. To see this, assume for contradiction that (µ(m′1))−1({c0}) ⊆

(µ(m1))
−1({c0}), which implies qc0 = |(µ(m′1))−1({c0})| ≤ |(µ(m1))

−1({c0})|. But s′ck ∈ (µ(m1))
−1({c0})\

(µ(m′1))
−1({c0}), thus qc0 < |(µ(m1))

−1({c0})|which contradicts with the quota restriction for c0.
Thus µ(m′1)(c0) \ µ(m1)(c0) 6= ∅. Relabel (µ(m1))

−1({c0}) and (µ(m′1))
−1({c0}) as before

(µ(m1))
−1({c0}) ≡ (sc01 , sc02 , . . . , sc0qc0

) and (µ(m′1))
−1({c0}) ≡ (s′c01

, s′c02
, . . . , s′c0q

c0
)

where sc0i �c0 sc0j , and s′
c0i
�c0 s′

c0j
for all i < j. Note that s′ck ≡ sc0l for some l ≤ qc0 since

s′ck ∈ (µ(m1))
−1({c0}) \ (µ(m′1))−1({c0}).

We will show that there exists some s ∈ (µ(m′1))
−1({c0}) \ (µ(m1))

−1({c0}) such that s �c0
sc0l ≡ s′ck . To see this, assume for contradiction that s′ck �c0 s for each s ∈ (µ(m′1))

−1({c0}) \
(µ(m1))

−1({c0}). Fix s ∈ (µ(m′1))
−1({c0}) \ (µ(m1))

−1({c0}). Notice 2 implies m′1(s) = c0. Also
knowing thatm1(s) 6= c0 yields c0 ∈ A.

Since c0 ∈ A, there exists s′c0n ∈ (µ(m′1))
−1({c0}) \ (µ(m1))

−1({c0}) such that s′c0n �c0 sc0n by
Lemma D.5. If n ≤ l, then s′c0n �c0 sc0n %c0 sc0l ≡ s′ck , which contradicts with the assumption that
s′ck �c0 s for each s ∈ (µ(m′1))

−1({c0})\ (µ(m1))
−1({c0}). Now assume n > l. LemmaD.5 implies

µ(m1)(s
′
c0n
) �s′

c0n

c0. Note that s′c0n 6∈ A since µ(m1)(s
′
c0n
) �s′

c0n

µ(m′1)(s
′
c0n
) ≡ c0. Given that s′c0n 6∈ A,

we have the followings: m′1(s′c0n) = ∅, and µ(m
′
1)(s

′
c0n
) = c0. But, 2 implies that s′c0n �c0 sc0l ≡ s′ck

contradicting with our assumption that s′ck �c0 s for each s ∈ µ(m
′
1)(c0) \ µ(m1)(c0).

Therefore, there exists some s ∈ (µ(m′1))
−1({c0}) \ (µ(m1))

−1({c0}) such that s �c0 sc0l ≡ s′ck ,
where s ≡ s′c0n . Lemma D.5 implies that µ(m1)(s

′
c0n
) �s′

c0n

c0. Denote µ(m1)(s
′
c0n
) ≡ c1 for some

c1 ∈ C. Notice that we are back to initial step where s′ck and c
0 correspond to s′c0n and c1.

Repeating the steps yields another s′c1m and c2, and etc. This process gives a preference rank-
ing as in the following way: s′ck �c sck , c0 �s′ck c, s′c0n �c0 s′ck , c1 �s′

c0n

c0 and etc. This
indicates the string cs′ckc

0s′c0nc
1s′c1mc

2 · · · in the preferences.
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Notice we can repeat this process only finitely many times as there is only finitely many
colleges and students. Therefore, there exists some j > i ≥ 1 such that cj = ci. Following the
logic in the proof of lemmaD.4 yields us for some k ≥ 1, ck = cwhich yields the preference cycle
< cs′ckc

0s′c0nc
1s′c1m · · · c

k >. This finishes the proof of case 2, and thus the proof of proposition E.1
which is the first direction of theorem E.1.

Proposition E.2. Fix Em such that the preferences are transitive, strict, responsive and there is no pref-
erence cycle. If (m1, µ) is dynamically stable then (m̂1, µ̂) is dynamically stable.

Proof of Proposition E.2. Suppose (m1, µ) is dynamically stable, and (m̂1, µ̂) is not dynamically
stable. We will show a contradiction. Since (m̂1, µ̂) is not dynamically stable, there exists some
coalition (X,S) and some t = 1, 2 such that (X,S) blocks (m̂1, µ̂)withm′t.

First suppose t = 2. Then by lemmaD.1, there exists some period 2 blocking pair for (m̂1, µ̂).
By lemma D.2, there exists some period 2 blocking pair for (m1, µ), and again by lemma D.1,
there exists some period 2 blocking coalition for (m1, µ). This contradicts with the fact that
(m1, µ) is dynamically stable.

Now suppose t = 1. Let A denote the coalition i.e. A = X ∪ S. Thus we have;

(i) for all s ∈ A, (m̂′1, µ̂) �s (m̂1, µ̂) and (ii) for all x ∈ A (m̂′1, µ̂) �x (m̂1, µ̂) (1)

Notice, either there are newmatches under m̂′1 as opposed to m̂1 or not. Thus, there are two
cases to consider: (i) m̂′1(s) /∈ {m̂1(s), ∅} for some s ∈ S1, or (ii) m̂′1(s) ∈ {m̂1(s), ∅} for all
s ∈ S1.

First suppose (i) holds; that is, m̂′1(s) /∈ {m̂1(s), ∅} for some s ∈ S1. Then s ∈ S. Let m̂′1(s) =
xcj for some c ∈ C. Thus xcj �s µ̂(m̂1)(s). Notice also that xcj ∈ X , thus s �xcj (µ̂(m̂1))

−1(xcj).
Furthermore, either µ̂(m̂1)(s) = xci for some j < i or µ̂(m̂1)(s) = xĉi for some c �s ĉ.

If µ̂(m̂1)(s) = xci for some j < i, the mapping on page 36 implies that (µ̂(m̂1))
−1(xcj) �xcj

(µ̂(m̂1))
−1(xci) contradicting with s �xcj (µ̂(m̂1))

−1(xcj). Thus µ̂(m̂1)(s) = xĉi for some c �s ĉ.
Given c �s ĉ = µ(m1)(s), lemma D.7 implies that s̃ �c s for all s̃ ∈ (µ(m1))

−1({c}). Note the
following holds: (µ̂(m̂1))

−1(xcj) �c s. Consequently (µ̂(m̂1))
−1(xcj) �xcj s, which is a contradic-

tion to s �xcj (µ̂(m̂1))
−1(xcj); and thus, a contradiction to xcj ∈ X . Hence (i) does not hold.

Now suppose (ii) holds; that is, m̂′1(s) ∈ {m̂1(s), ∅} for all s ∈ S1. Then consider m′1 in Em

wherem′1(s) = m̂′1(s). Notice that C(m′1) = C(m1)∪{c|xcj ∈ X} and S(m′1) = S(m1)∪S. Consider
the following matching over C(m′1) ∪ S(m′1);

η = {µ(m1)(s)|s ∈ S(m′1)}

Notice η is stable. To see this, assume otherwise i.e. there exists a pair (c, s) in C(m′1) × S(m′1)
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that blocks η, that is; c �s µ(m1)(s) and s �c s for some s ∈ S(m′1) ∩ (µ(m1))
−1({c}). However

lemmaD.7 implies that if c �s µ(m1)(s) then s̃ �c s for any s̃ ∈ (µ(m1))
−1({c}), thus s �c s. This

is a contradiction. Hence η is stable over C(m′1) ∪ S(m′1).
Since η is unique stable matching in an a-cyclic preferences environment, µ(m′1) = η as there

is no period-2 blocking coalition to (m1, µ). Thus µ(m′1) = µ(m1)which implies µ̂(m̂′1) = µ̂(m̂1).
Therefore (ii) cannot hold either, and A = ∅. This finishes the proof of proposition E.2, which
is the other direction of theorem E.1.

Thus, these two propositions simply implies theorem E.1.

E.2 Proof of Theorem 5.1

Proof of Theorem 5.1. First assume that (m1, µ) is dynamically group stable. Then lemma D.7
implies that µ(m1) is stable over C ∪ S.

Suppose η is a group stable matching over C∪S. Wewant to show there exists a dynamically
stable matching (m1, µ) in Em such that µ(m1) = η. To see this, consider η̂ in the related static
one-to-onemarket that corresponds to η. Since preferences are responsive, η is stable if and only
if η̂ is stable (Roth & Sotomayor, 1990).

Define (m̂1, µ̂)where m̂1 = ∅, and µ̂(∅) = η̂ and µ̂(m̃1) is some random stablematching at m̃1.
Clearly (m̂1, µ̂) is dynamically stable in the related dynamic one-to-onemarket. But proposition E.1
implies that (m1, µ) which is induced by (m̂1, µ̂) is dynamically stable in Em where µ(m1) = η,
which finishes the proof.

E.3 Proof of Proposition 5.2

As we have identified in the motivating example and above, strategic manipulation is on the
table if a college prefers more spread group of students. Although there is no uncertainty here,
the college who is willing to do strategic manipulation behaves as if he is a risk lover. It is so
since it prefers more spread -heterogeneous- groups of students to the one that is relatively
less spread -homogeneous- group of students. In this section, we generalize this insight; that
is, there is room for strategic manipulation unless colleges have globally average preferences.
First, we will prove couple of auxiliary lemmas:

Lemma E.1. Let Eo be a dynamic one-to-one matching market where agents are perfectly patient, and
Es be the related static one-to-one matching market. For any stable matching η on Es, there exists a
dynamically stable matching (m1, µ) in Eo such that µ(m1) = η.

Proof of Lemma E.1. The proof is constructive following the logic in the second part of the proof
of proposition 5.1.
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Lemma E.1 states that any statically stable matching in one-to-one matching market can be
sustained as a dynamically stable matching outcome in any dynamic version of the market. It
crucially depends on the fact that everyone is perfectly patient, although it is robust to slight
impatience.

Lemma E.2 proves the following: no college who has globally average preferences does not
match with a student, whom it would not be matched with according to the dynamically stable
matching in related one-to-one market. In the example on page 7, c1 matches with s4 and s5

at period 1, because c1 prefers {s4, s5, s6} to {s1, s2, s3}. In other words, since c1 does not have
globally average preferences, there is room for strategic manipulation. Thus, absent extreme
preferences, the strategic manipulation via matching with worse students at period-1 is off the
table. Notice, it is not the only possible blocking coalition in the original market for what related
one-to-one suggests. Some college(s) might want to break some match and simply wait for
the second period. However, we show that such an urge can be eliminated for dynamically
stable matchings in the related market which are statically stable at the same time. Following
proposition summarizes it.

Lemma E.2. Fix Em and let colleges have globally average responsive preferences. Let (m̂1, µ̂) be dy-
namically stable matching in Eo. If (m1, µ) is not dynamically stable then there exists period-1 blocking
coalition to (m1, µ) withm′1 wherem′1(s) ∈ {m1(s), ∅} for all s ∈ S1.

Proof of Lemma E.2. Assume that (m̂1, µ̂) is dynamically stable but not (m1, µ). Then there exists
a t-period blocking coalition C ∪ S that blocks (m1, µ)withm′t.

First suppose t = 2. Then by lemmaD.1, there exists some period 2 blocking pair for (m1, µ).
By lemmaD.2, there exists some blocking pair for (m̂1, µ̂), contradictingwith the fact that (m̂1, µ̂)

is dynamically stable.

Now suppose t = 1. Then we have the followings:

(i) for all s ∈ S (m′1, µ) �s (m1, µ) and (ii) for all c ∈ C (m′1, µ) �c (m1, µ)

As before, let m̂′1 in Eo correspond to m′1. Therefore µ̂(m̂′1) �s µ̂(m̂1) for each s ∈ S. Notice one
of the followings hold:

i. m′1(s) 6∈ {m1(s), ∅} for some s ∈ S1.

ii. m′1(s) ∈ {m1(s), ∅} for all s ∈ S1.

First, assume i. holds; that is, there exists some s ∈ S1 such thatm′1(s) 6∈ {m1(s), ∅}. In this case
we show that there exists a college c, whose preferences does not respect to average preferences.
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Notice that m′1(s) = c 6= m1(s) implies that c ∈ C and s ∈ S, which implies c �s µ(m1)(s).
Thus xcj �s µ̂(m̂1)(s) for any j = 1, . . . , qc. Given (m̂1, µ̂) is dynamically stable, µ̂(m̂1)(x

c
j) �xcj s

for each j = 1, . . . , qc. To see this assume otherwise i.e. s �xci µ̂(m̂1)(x
c
i) for some i ≤ qc. But

xci �s µ̂(m̂1)(s) implies that (xci , s) is a period-1 blocking pair for (m̂1, µ̂), contradicting with
dynamic stability of (m̂1, µ̂). Thus, µ̂(m̂1)(x

c
j) �xcj s for each j = 1, . . . , qc.

Note also that c ∈ C implies µ(m′1) �c µ(m1). Let (µ(m1)
−1({c}) ≡ (s1, s2, . . . , sqc) where

si �c sj for any i < j - analogously denote (µ(m′1)
−1({c}) ≡ (s′1, s

′
2, . . . , s

′
qc). Notice that

µ̂(m̂1)(x
c
k) �xck s 6= ∅ for each k = 1, . . . , qc; equivalently, si �c s for each i = 1, . . . , qc. First,

notice that |(µ(m1)
−1({c})| = qc, otherwise (xcqc , s)would form a blocking pair for (m̂1, µ̂) at pe-

riod 1. Thus |(µ(m1)
−1({c})| = qc. Given that |µ(m′1)(c)| ≤ qc, if |µ(m′1)(c)| < k = qc we have

s′j = ∅ for j = k + 1, . . . , qc, as before.
Let A ≡ (µ(m1)

−1({c}) \ (µ(m′1)−1({c}) and A′ ≡ (µ(m′1)
−1({c}) \ (µ(m1)

−1({c}). Since
µ(m′1) �c µ(m1), and c has responsive preferences, A′ �c A. Wlog, let us re-re-label A such that
A ≡ (s1, · · · , sm) where si �c sj for i < j and note that m ≤ qc. Analogously A′ ≡ (s′1, · · · , s′n).
Notice that n ≤ m. If n < m, re-defineA′ as (s′1, · · · , s′m) such that s′k = ∅ for each k = n+1, . . . ,m

so that A and A′ has the same dimension.
With A and A′ in hand, we know that s ∈ A′ thus s = s′i for some i ≤ n. Notice that

sm �c s′i, since µ̂(m̂1)(x
c
j) �xcj s for each j = 1, . . . , qc. Thus si �c s′i; even more, sk �c s′k for any

k = i, i+ 1, . . . ,m.
Given that c has responsive preferences and A′ �c A, there exists some j < i such that

s′j �c sj . Notice that there could be multiple indices k < i such that s′k �c sk. Let j be the
minimum such index i.e. j = min{k : s′k �c sk}. Therefore we have the following relation:

A \ {sj, sj+1, . . . , si} �c A′ \ {s′j, s′j+1, . . . , s
′
i}

since sl �c s′l for any l 6∈ {j, j + 1, · · · , i}. As c has responsive preferences and A′ �c A, it must
be the case that {s′j, s′j+1, . . . , s

′
i} �c {sj, sj+1, . . . , si}. By construction, s′j �c sj �c si �c s′i �c ∅,

therefore an average responsive c has the following contradicting relation

{sj, sj+1, . . . , si} �c {s′j, s′j+1, . . . , s
′
i}

Therefore i. is not possible. Thusm′1(s) ∈ {m1(s), ∅} for all s ∈ S1, which finishes the proof.

Proof of Proposition 5.2. We will do a direct proof. Let η be a stable matching on Es, and thus
it is stable over C ∪ S. Consider η̂ in the related static one-to-one market that corresponds to η.
Since preferences are responsive η is stable if and only if η̂ is stable (Roth & Sotomayor, 1990).
Lemma E.1 implies that there exists a dynamically stable matching (m̂1, µ̂) in the related dynamic
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one-to-one market such that µ̂(m̂1) = η̂.
Knowing (m̂1, µ̂) is dynamically stable (m1, µ) in Eo, we will show that there exists a dynam-

ically group stable matching (m1, µ̃) in Em such that µ̃(m1) ≡ µ̂(m̂1). First construct (m1, µ) as
in page 36. If (m1, µ) is dynamically group stable, then we are done. Thus, suppose (m1, µ) is
not dynamically group stable.

By lemma E.2, there exists a period-1 blocking coalition to (m1, µ) with m′1 where m′1(s) ∈
{m1(s), ∅} for all s ∈ S1. Let C ∪ S block (m1, µ)withm′1. Then we have the followings:

(i) for all s ∈ S, (m′1, µ) �s (m1, µ) and (ii) for all c ∈ C, (m′1, µ) �c (m1, µ)

Now re-define the contingent matching µ̃ as follows:

µ̃(m′1) = µ(m1) and µ̃(ṁ1) = µ(ṁ1) ∀ṁ1 6= m′1

Note that µ̃ is stable over C(m′1) ∪ S(m′1). In other words, there is no t = 2 blocking coalition to
(m1, µ̃) at m′1. To see this, assume otherwise i.e. there is a blocking coalition to (m1, µ̃) at m′1.
Then by lemma D.1, there exists a period 2 blocking pair for (m1, µ̃) atm′1. By lemma D.2, there
exists a period 2 blocking pair for (m̂1, ˆ̃µ) at m̂′1.

Notice that µ̃(m′1) = µ(m1) implies ˆ̃µ(m̂′1) = µ̂(m̂1). But µ̂(m̂1) = η̂. Thus the blocking pair
for (m̂1, ˆ̃µ) at m̂′1 blocks ˆ̃µ(m̂′1) = µ̂(m̂1) = η̂, contradicting with stability of η̂. Thus µ̃ is stable
over C(m′1) ∪ S(m′1).

Now, for any possible t = 1 blocking coalition to (m1, µ)withm′1, redefine µ atm′1 as such i.e.
µ̃(m′1) = µ(m1) so that and the coalition is discouraged and (m1, µ̃) is dynamically stable where
µ̃(m1) ≡ µ̂(m̂1) = η̂ ≡ η, which finishes the proof.

E.4 The Role of Quotas

For strategic manipulation to be successful in the original market, a commitment by the colleges
to not poach students from each other is also necessary. So, commitment is another important
ingredient of suchmanipulation. Since it is directly related to the quotas of colleges, we analyze
the role that quotas play in this section.

In amany-to-onematchingmarket, each college c is constrained in the number of students to
admit with, qc. If qc = 1 for all the colleges, then we are back to standard one-to-one matching
market. Notice in the illustrative example on page 7, college c1 is not matched with s1, s2 or
s3 in the second period, since there is no more slot for all of them. Now, consider a slightly
different scenario: example A.2 As Example A.2 illustrates, when there are abundant slots in
the market, strategic manipulation does not arise. The underlying reason for that is the lack of

56



commitment due to the high number of slots. The following proposition summarizes what is
observed through this example.

Proposition E.3. Fix Em such that colleges have strict and responsive preferences. Let Es be the related
static many-to-one matching market. If qc ≥ |S1 ∪S2| for each c ∈ C, then (m1, µ) is dynamically group
stable if and only if (m̃1, µ̃) = (∅, µ̃(∅)) is dynamically group stable.

Proposition E.3 has strong premise, that is the abundant number of slots by each college.
However, the number of slots announced initially and filled during the market is observable.
Thus the result is useful for empirical analysis although it relies on strong assumptions.

Intuitively, in all dynamically stablematchings, students shouldmatchwith their top ranked
colleges for whom they are acceptable. It is because colleges have excessive number of slots.
Thus, we can reduce the preference listings accordingly, which leads to acyclic preferences.
Then, Proposition E.3 follows simply by referring to Theorem 5.1.

E.4.1 Proof of Proposition E.3

Lemma E.3. Fix Em such that the preferences are transitive, strict and responsive. Let qc ≥ |S1 ∪ S2|
for each c ∈ C. Fix s ∈ S, and let c = max%s{ċ ∈ C : s �ċ ∅}. The followings hold:

i. µ(m1)(s) = c for any dynamically stable matching (m1, µ) on Em.

ii. µ̂(m̂1)(s) = xcj for any dynamically stable matching (m̂1, µ̂) on Eo.

Proof of Lemma E.3. We will prove part i. and ii. separately.
Part i. Assume for contradiction that (m1, µ) is a dynamically stable matching on Em, and

µ(m1)(s) = c̃ for some s ∈ S and there exists some c ∈ C such that c �s c̃.
Notice that, |(µ(m1))

−1({c})| ≤ qc, since qc ≥ |S1 ∪ S2| and µ(m1)(s) 6= c. Notice dynamic
stability of (m1, µ) implies that m1(s) = c̃. But consider m̃1 where m̃1(s) = ∅ and m̃1 = m1

otherwise. Dynamic stability of (m1, µ) implies that µ(m1)(s) = c̃ %s µ(m̃1)(s). And thus,
µ(m̃1)(s) 6= c. But then |(µ(m̃1))

−1({c})| ≤ qc for the same reasoning. And thus, (c, s) is a
period 2 blocking pair for (m1, µ). By corollary 4.1, (m1, µ) is not dynamically stable, which is a
contradiction.

Part ii. Assume for contradiction that (m̂1, µ̂) is a dynamically stable matching on Eo, and
µ̂(m̂1)(s) = xc̃j for some s ∈ S and there exists some c ∈ C such that c �s c̃. Notice that,
(µ̂(m̂1))

−1(xck) = ∅ for some k ≤ qc, since qc ≥ |S1 ∪ S2| and µ̂(m̂1)(s) 6= xci for any 1 ≤ i ≤ qc.
Thus, (xck, s) is a period 1 blocking pair if s ∈ S1, and a period 2 blocking pair if s ∈ S2. By
Proposition 4.2, (m̂1, µ̂) is not dynamically stable matching.
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F Appendix: Proofs for Section 5.3 and Section 6

F.1 Proof of Proposition 5.3

Proof of Proposition 5.3. Part i. directly follows from stability of µ(∅). Part ii. requires proof
which is to be typed.

Proof of Part ii.
Let c0 ∈ C. Then there exists s ∈ S such that m1(s) = c0 and s′ �c0 s for all s′ ∈ (µ(∅))−1({c0})
by Part i. For each c ∈ C, let

µ(m1)(c) = (sc1, s
c
2, . . . , s

c
qc) and µ(∅)(c) = (σc1, σ

c
2, . . . , σ

c
qc)

denote the matching outcomes, where sci �c scj and σci �c σcj for any i < j. Since c0 ∈ C, we
have the following: (m1, µ) �c0 (∅, µ). Therefore, responsive preferences imply that there exists
sc

0

ic0
∈ (µ(m1))

−1({c0}) \ (µ(∅))−1({c0}) such that sc0ic0 �c0 σ
c0

ic0
. Since µ(∅) is a statically stable

matching, we have µ(∅)(sc0ic0 ) �sc0i
c0

c0. And thus, sc0ic0 ∈ S(m1) since sc
0

ic0
/∈ S.

initial step: Let µ(∅)(sc0ic0 ) = c1. Given that c1 �
sc

0
i
c0

c0, µ(m1)(s
c0

ic0
) = c0 and µ is a stable

matching algorithm, s �c1 sc
0

ic0
for all s ∈ (µ(m1))

−1({c1}) \m−11 ({c1}). And thus, the stability of
µ implies |(µ(∅))−1(c1)| ≤ |(µ(m1))

−1(c1)| = qc1 . Moreover, there exists sc1ic1 ∈ (µ(m1))
−1({c1}) \

(µ(∅))−1({c1}) such that sc1ic1 �c1 σ
c1

ic1
. Again, since µ(∅) is a statically stable matching, we have

µ(∅)(sc1ic1 ) �sc1i
c1

c1. And thus, sc1ic1 ∈ S(m1) since sc
1

ic1
/∈ S.

Let µ(∅)(sc1ic1 ) = c2. Notice we are back to the initial step and we can keep iterating in the
same way until we reach to a same college i.e. ck = cl for some k ≤ l − 2, as k = l − 1 is not
possible.

Notice that, if ci = c0 for some i ≤ l, then we are done. Assume for contradiction ci 6= c0 for
any i ≤ l. But notice that if ck = cl, then ck−1 = cl−1, and for some n ≤ l, c1 = cn. Therefore,
assume ck = c1 for some k > 2without loss of generality. Then we have the following string:

c1, sc
1

ic1
, c2, sc

2

ic2
, c3, sc

3

ic3
, . . . , ck−1, sc

k−1

i
ck−1

, ck ≡ c1 (2)

where scji
cj
�cj sc

j−1

i
cj−1

and cj+1 �
sc

j
i
cj

cj for each j = 1, 2, . . . , k − 1. Also µ(∅)(scji
cj
) = cj+1 and

µ(m1)(s
cj

i
cj
) = cj .

Notice that sck−1

i
ck−1
∈ (µ(∅))−1({c1})\(µ(m1))

−1({c1}) and scki
ck
∈ (µ(m1))

−1({c1})\(µ(∅))−1({c1}).
Since |(µ(∅))−1(c1)| ≤ |(µ(m1))

−1(c1)| = qc1 , for every s ∈ (µ(∅))−1({c1}) \ (µ(m1))
−1({c1}) such

that c1 �c1 µ(m1)(s), there exists s′ ∈ (µ(m1))
−1({c1}) \ (µ(∅))−1({c1}) such that s′ �c1 s;

where s and s′ are exchanged via a string which forms a loop as in 2 above. Since sc0ic0 ∈
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(µ(∅))−1({c1}) \ (µ(m1))
−1({c1}) and c1 �

sc
0

i
c0

µ(m1)(s
c0

ic0
) = c0, there exists some s′ �c1 sc

0

ic0
;

where s′ and sc
0

ic0
are exchanged via a loop as in 2. Therefore, c0 is part of that loop, which

finishes the proof.

What Proposition 5.3 states is also in line with the empirical evidence on the job market for
finance Ph.D. candidates. Every year, there are two conferences that provide placement services
to the finance Ph.D. job market: the FMA in October and the AFA in January. Using survey
responses of 237 former first time job market participants who sought a placement between
2007 and 2015, Volkov et. al (2016) defines several empirical measures of success at various
stages of the job market. Based on their sample of 237 candidates, 45.8% of them went only to
the FMA, 23.3% went only to the AFA, and 25.8% went to both. They found that a vast majority
of top quintile candidates skipped the FMA and secured jobs at the AFA. The FMA appears
to dominate the job market for lower quintile candidates. The percent of candidates who go
to the FMA and accept a job is 34%, 38%, 69%, and 49% for the 2nd, 3rd, 4th, and 5th quintiles
respectively. See Figure 2 for placement data in detail.

Figure 2: Job Market Outcomes

F.2 Proof of Proposition 6.1

Proof of Proposition 6.1. First we will show that any dynamically stable matching (m1, µS) has
to be statically stable as well i.e. µS(m1) is stable among C ∪S . To see this, assume otherwise i.e.
µS(m1) is not statically stable, or equivalently not in the core. Then there exists c and s ∈ S2 such
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that m1(c) 6= ∅, s �c m1(c) and c �s µS(m1)(s). Now consider the first period matching where
c waits for s i.e. formally consider m1,c where m1,c(c) = ∅ and m1,c(·) = m1(·) otherwise. Given
that (m1, µS) is dynamically stable, we must have µS(m1,c)(c) = m1(c). Thus dynamic stability
of (m1, µS) implies that µS(m1,c)(s) �s c �s µS(m1)(s). Also notice that µS(m1,c) \ {(c,m1(c))} is
stable over C(m1)∪S(m1). Let us denote µS(m1,c)\{(c,m1(c))} as µS(m1,c)|C(m1)∪S(m1) Thus both
µS(m1,c)|C(m1)∪S(m1) and µS(m1) is stable at m1. µS(m1,c)(s) �s µS(m1)(s) implies that µS(m1) is
not the student optimal stable matching at m1, contradicting with the definition of µS . There-
fore we have the following: any dynamically stable matching (m1, µS) yields a statically stable
matching outcome µS(m1).

Now that we know for any dynamically stable matching (m1, µS), µS(m1) is statically stable,
and (∅, µS) is always dynamically stable, we will show that there is a unique dynamically stable
matching outcome for any arrivals that is equivalent to mS . For contradiction, assume there
exists a dynamically stable matching (m1, µS) such that µS(m1) 6= µS(∅). Not that there are two
cases:

1. m1(s) = µS(∅)(s) for all s ∈ S1 such that m1(s) 6= ∅. Then µS(m1)(s) = µS(∅)(s) for all
s ∈ S2. To see this, assume otherwise i.e. µS(m1)(s) 6= µS(∅)(s) for some ŝ ∈ S2. Then
consider the restriction of µS at ∅ over C(m1) ∪ S(m1), that is µS(∅)|{C(m1)∪S(m1)} which
is clearly stable over C(m1) ∪ S(m1). Thus µS(m1) can not be the student optimal stable
matching at m1 as there exists another stable matching among C(m1) ∪ S(m1) which ŝ

strictly prefers; that is µS(∅)|{C(m1)∪S(m1)} �ŝ µS(m1). Thus µS(m1)(s) = µS(∅)(s) for all
s ∈ S2. Therefore we have that µS(m1)(s) = µS(∅)(s) for all s ∈ S.

2. For some s̃ ∈ S1, m1(s̃) 6= µS(∅)(s̃). Thus it has to be the case that µS(∅)(s̃) �s̃ m1(s̃).
Then consider deviation by such s̃ ∈ S1 of waits; formally consider m′1 where m′1(s) = ∅
if µS(∅)(s) �s m1(s) and m′1(s) = m1(s) otherwise. Notice that m′1(s) = µS(∅)(s) for all s
that is not in the coalition. Then clearly µS(m′1)(s) = µS(∅)(s) for all s ∈ S(m′1) (by case
1). Therefore for all s ∈ S1 such that µS(∅)(s) �s m1(s), we have µS(m′1)(s) �s m1(s), thus
they form a period 1 block contradicting with (m1, µS) being dynamically stable.

Case 1 and 2 implies that any dynamically stable matching (m1, µS) has equivalent outcome to
(∅, µS) which is always dynamically stable. But notice µS(∅) = mS i.e. it is the student optimal
stable matching of the static environment.
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F.3 Proof of Proposition 6.2

Lemma F.1. Let (m1, µC) be college-optimal DSM. If m1(c) %c m
C(c) for all c ∈ C \ C(m1) then

µC(m1)(c) %c m
C(c) for all c ∈ C(m1).

Proof of Lemma F.1. Let (m1, µC) be college-optimalDSM,m1(c) %c m
C(c) for all c ∈ C \C(m1), and

assume for contradiction that mC(c0) �c0 µC(m1)(c0) for some c0 ∈ C(m1). Let µC(m1)(c0) = s0

andmC(c0) = s1, thus s1 �c0 s0.
Let µC(m1)(s1) = c1. Since (m1, µC) is a DSM, c1 �s1 c0. Also notice that stability of mC implies
thatmC(c1) �c1 s1 = µC(m1)(c1). Given our assumption,m1(c1) = ∅.
Notice we can repeat this argument only finitely many times as there are finitely many agents
in the environment. Thus for some k > 1, sk = s0 and we have the following relations:

mC(ci) = si+1 �ci si = µC(m1)(ci) ∀i = 0, 1, . . . , k − 1

µC(m1)(sj) = cj �sj cj−1 = mC(sj) ∀j = 1, 2, . . . , k

Knowing that for any c such thatmC(c) �c µC(m1)(c),mC(c) ∈ S(m1), consider matching η over
C(m1) ∪ S(m1):

η(c) = mC(c) ∀c such that mC(c) �c µC(m1)(c)

η(c) = µC(m1)(c) otherwise

Notice that η is stable over C(m1) ∪ S(m1). To see this assume otherwise i.e. there is a pair
{c, s} ∈ C(m1) ∪ S(m1) that blocks η. There are two possibilities:

i. η(s) = µC(m1)(s) and η(c) = mC(c)

ii. η(c) = µC(m1)(c) and η(s) = mC(s)

If i. then s �c mC(c) �c µC(m1)(c) and c �s µC(m1)(s). Thus {c, s} blocks (m1, µC) at t = 1,
contradicting with dynamic stability of (m1, µC).
If ii. then s �c µC(m1)(c) %c m

C(c) and c �s mC(c). Thus {c, s} blocks mC , contradicting with
stability ofmC .
Thus η is a stable matching over C(m1)∪S(m1) and η(c) �c µC(m1)(c) for some c ∈ C(m1). Thus
(m1, µC) is not the college-optimal DSM. This finishes the proof.

Proof of Proposition 6.2. Let (m1, µC) be college-optimalDSM and assume for contradiction that
mC(c) �c µC(m1)(c) for some c ∈ C. Then by lemma F.1, there exists c0 such that mC(c0) �c0
m1(c0) 6= ∅.
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LetmC(c0) = s1. Ifm1(s1) = c1 6= ∅ then dynamic stability of (m1, µC) implies thatm1(s1) �s1
c0 and stability ofmC implies thatmC(c1) �c1 s1 = m1(c1) 6= ∅.

LetmC(c1) = s2. Ifm1(s2) = c2 6= ∅ then dynamic stability of (m1, µC) implies thatm1(s2) �s2
c1 and stability ofmC implies thatmC(c2) �c2 s2 = m1(c2) 6= ∅.

Now consider the blocking coalition C ≡ {c ∈ C| mC(c) �c m1(c)} andm′1 where

m′1(c) = ∅ ∀c such that mC(c) �c m1(c)

m′1(c) = m1(c) otherwise

We claim that µC(m′1)(c) %c m
C(c) �c m1(c) for all c ∈ C. We will prove this by contradiction i.e.

assume thatmC(c0) �c0 µC(m′1)(c0) for some c0 ∈ C.
First notice that C 6= ∅ by lemma F.1. Also note that mC(c) ∈ S(m′1) for each c ∈ C. To see

this, assume otherwise i.e. mC(c) /∈ S(m′1) for some c ∈ C. LetmC(c) = s. Thenm′1(s) = m1(s) =

c̃ 6= ∅. But then dynamic stability of (m1, µC) implies thatm1(s) �s c and stability ofmC implies
that mC(c̃) �c̃ s = m1(c̃) 6= ∅. Thus c̃ ∈ C which implies s ∈ S(m′1) as m′1(c̃) = ∅, which is a
contradiction. ThereforemC(c) ∈ S(m′1) for each c ∈ C.

LetmC(c0) = s1. Dynamic stability of (m1, µC) implies thatµC(m′1)(s1) �s1 c0. LetµC(m′1)(s1) =
c1. Then stability of mC implies that mC(c1) �c1 s1 = µC(m

′
1)(c1). But we can repeat this argu-

ment only finitely many times as there is only finitely many agents in the environment.
Following the logic in the proof of lemma F.1, define matching η over C(m′1) ∪ S(m′1):

η(c) = mC(c) ∀c such that mC(c) �c µC(m′1)(c)

η(c) = µC(m1)(c) otherwise

The stability of η over C(m′1) ∪ S(m′1) with a similar argument in the proof of lemma F.1, con-
tradicting with (m1, µC) being college-optimal dynamically stable matching. This finishes the
proof.
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