IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Genericity and Markovian Behavior in Stochastic Games"

by Hans Haller & Roger Lagunoff

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Herings P. Jean-Jacques & Houba Harold, 2010. "The Condercet Paradox Revisited," Research Memorandum 009, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  2. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
  3. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
  4. Herings P.J.J. & Houba H, 2015. "Costless delay in negotiations," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).
  5. Herings, P. Jean-Jacques & Peeters, Ronald & Schinkel, Maarten Pieter, 2005. "Intertemporal market division:: A case of alternating monopoly," European Economic Review, Elsevier, vol. 49(5), pages 1207-1223, July.
  6. Roger Lagunoff & Hans Haller, 1997. "Markov Perfect Equilibria in Repeated Asynchronous Choice Games," Game Theory and Information 9707006, EconWPA.
  7. Juan Escobar & Ulrich Doraszelski, 2008. "A Theory of Regular Markov Perfect Equilibria\\in Dynamic Stochastic Games: Genericity, Stability, and Purification," 2008 Meeting Papers 453, Society for Economic Dynamics.
  8. Eraslan, Hülya & McLennan, Andrew, 2013. "Uniqueness of stationary equilibrium payoffs in coalitional bargaining," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2195-2222.
  9. Sibdari, Soheil & Pyke, David F., 2014. "Dynamic pricing with uncertain production cost: An alternating-move approach," European Journal of Operational Research, Elsevier, vol. 236(1), pages 218-228.
  10. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
  11. Tasos Kalandrakis, 2006. "Regularity of pure strategy equilibrium points in a class of bargaining games," Economic Theory, Springer, vol. 28(2), pages 309-329, 06.
  12. Duggan, John & Kalandrakis, Tasos, 2012. "Dynamic legislative policy making," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1653-1688.
  13. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
  14. Medio, Alfredo & Raines, Brian, 2007. "Backward dynamics in economics. The inverse limit approach," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1633-1671, May.
  15. Ulrich Doraszelski & Mark Satterthwaite, 2003. "Foundations of Markov-Perfect Industry Dynamics. Existence, Purification, and Multiplicity," Discussion Papers 1383, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.