IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?"

by De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Giannone, Domenico & Lenza, Michele & Reichlin, Lucrezia, 2012. "Money, credit, monetary policy and the business cycle in the euro area," CEPR Discussion Papers 8944, C.E.P.R. Discussion Papers.
  2. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
  3. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  4. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  5. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," CEPR Discussion Papers 7796, C.E.P.R. Discussion Papers.
  6. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
  7. Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
  8. Olfa Kaabia & Ilyes Abid & Khaled Guesmi, 2012. "Does Bayesian Shrinkage Help to Better Reflect What Happened during the Subprime Crisis?," EconomiX Working Papers 2012-46, University of Paris West - Nanterre la Défense, EconomiX.
  9. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 2(97), pages 436-451, May.
  10. Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
  11. Alexander Chudik & Valerie Grossman & M. Hashem Pesaran, 2014. "A Multi-Country Approach to Forecasting Output Growth Using PMIs," CESifo Working Paper Series 5100, CESifo Group Munich.
  12. Marcellino, Massimiliano & Schumacher, Christian, 2008. "Factor-MIDAS for now- and forecasting with ragged-edge data: A model comparison for German GDP," CEPR Discussion Papers 6708, C.E.P.R. Discussion Papers.
  13. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
  14. Jan J. J. Groen & George Kapetanios, 2008. "Revisiting useful approaches to data-rich macroeconomic forecasting," Staff Reports 327, Federal Reserve Bank of New York.
  15. Chudik, Alexander & Pesaran, M. Hashem, 2014. "Theory and practice of GVAR modeling," Globalization and Monetary Policy Institute Working Paper 180, Federal Reserve Bank of Dallas.
  16. Gary, Koop, 2013. "Using VARs and TVP-VARs with Many Macroeconomic Variables," SIRE Discussion Papers 2013-35, Scottish Institute for Research in Economics (SIRE).
  17. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
  18. Giacomini, Raffaella & Ragusa, Giuseppe, 2011. "Incorporating theoretical restrictions into forecasting by projection methods," CEPR Discussion Papers 8604, C.E.P.R. Discussion Papers.
  19. Eliana González, . "Forecasting With Many Predictors. An Empirical Comparison," Borradores de Economia 643, Banco de la Republica de Colombia.
  20. Chris Bloor & Troy Matheson, 2009. "Real-time conditional forecasts with Bayesian VARs: An application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/02, Reserve Bank of New Zealand.
  21. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," Working Paper Series 1733, European Central Bank.
  22. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," Economics Working Papers ECO2009/31, European University Institute.
  23. Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
  24. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working papers 2009-19, University of Connecticut, Department of Economics.
  25. Ricco, Giovanni & Ellahie, Atif, 2012. "Government Spending Reloaded: Fundamentalness and Heterogeneity in Fiscal SVARs," MPRA Paper 42105, University Library of Munich, Germany.
  26. Brodie, Joshua & Daubechies, Ingrid & De Mol, Christine & Giannone, Domenico & Loris, Ignace, 2008. "Sparse and stable Markowitz portfolios," Working Paper Series 0936, European Central Bank.
  27. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
  28. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, Model Selection, and Shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
  29. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  30. Helmut Lütkepohl, 2012. "Fundamental Problems with Nonfundamental Shocks," Discussion Papers of DIW Berlin 1230, DIW Berlin, German Institute for Economic Research.
  31. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
  32. Lenza, Michele & Pill, Huw & Reichlin, Lucrezia, 2010. "Monetary policy in exceptional times," Working Paper Series 1253, European Central Bank.
  33. Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
  34. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
  35. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2008. "Explaining The Great Moderation: It Is Not The Shocks," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 621-633, 04-05.
  36. Berg, Tim Oliver, 2015. "Multivariate Forecasting with BVARs and DSGE Models," MPRA Paper 62405, University Library of Munich, Germany.
  37. Alexander Chudik & M. Hashem Pesaran, 2007. "Infinite Dimensional VARs and Factor Models," CESifo Working Paper Series 2176, CESifo Group Munich.
  38. Ching Wai (Jeremy) Chiu & Bjørn Eraker & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2011. "Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach," Research Working Paper RWP 11-11, Federal Reserve Bank of Kansas City.
  39. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.
  40. Giannone, Domenico & Lenza, Michele & Reichlin, Lucrezia, 2012. "The ECB and the interbank market," Working Paper Series 1496, European Central Bank.
  41. Chris Bloor & Troy Matheson, 2008. "Analysing shock transmission in a data-rich environment: A large BVAR for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2008/09, Reserve Bank of New Zealand.
  42. Simone Auer, 2014. "Monetary Policy Shocks and Foreign Investment Income: Evidence from a large Bayesian VAR," Working Papers 2014-02, Swiss National Bank.
  43. Sydney C. Ludvigson & Serena Ng, 2009. "A Factor Analysis of Bond Risk Premia," NBER Working Papers 15188, National Bureau of Economic Research, Inc.
  44. Jana Eklund & George Kapetanios, 2008. "A Review of Forecasting Techniques for Large Data Sets," National Institute Economic Review, National Institute of Economic and Social Research, vol. 203(1), pages 109-115, January.
  45. Rachida Ouysse, 2011. "Comparison of Bayesian moving Average and Principal Component Forecast for Large Dimensional Factor Models," Discussion Papers 2012-03, School of Economics, The University of New South Wales.
  46. Eliana González, 2011. "Forecasting With Many Predictors. An Empirical Comparison," BORRADORES DE ECONOMIA 007996, BANCO DE LA REPÚBLICA.
  47. Kerstin Bernoth & Andreas Pick, 2009. "Forecasting the fragility of the banking and insurance sector," DNB Working Papers 202, Netherlands Central Bank, Research Department.
  48. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Working Papers 634, Queen Mary University of London, School of Economics and Finance.
  49. Lucrezia Reichlin, 2009. "Comment on "How Has the Euro Changed the Monetary Transmission Mechanism?"," NBER Chapters, in: NBER Macroeconomics Annual 2008, Volume 23, pages 127-139 National Bureau of Economic Research, Inc.
  50. Giacomini, Raffaella, 2014. "Economic theory and forecasting: lessons from the literature," CEPR Discussion Papers 10201, C.E.P.R. Discussion Papers.
  51. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals," Working papers 2009-42, University of Connecticut, Department of Economics.
  52. Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
  53. Fornaro, Paolo, 2015. "Forecasting U.S. Recessions with a Large Set of Predictors," MPRA Paper 62973, University Library of Munich, Germany.
  54. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2012. "Forecasting government bond yields with large Bayesian vector autoregressions," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2026-2047.
  55. Scharnagl, Michael & Schumacher, Christian, 2007. "Reconsidering the role of monetary indicators for euro area inflation from a Bayesian perspective using group inclusion probabilities," Discussion Paper Series 1: Economic Studies 2007,09, Deutsche Bundesbank, Research Centre.
  56. Jarociński, Marek, 2010. "Imposing parsimony in cross-country growth regressions," Working Paper Series 1234, European Central Bank.
  57. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
  58. David de Antonio Liedo & Elena Fernández Muñoz, 2010. "Nowcasting Spanish GDP growth in real time: "One and a half months earlier"," Banco de Espa�a Working Papers 1037, Banco de Espa�a.
  59. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
  60. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
  61. Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
  62. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
  63. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
  64. Altavilla, Carlo & Giannone, Domenico & Lenza, Michele, 2014. "The Financial and Macroeconomic Effects of OMT Announcements," CEPR Discussion Papers 10025, C.E.P.R. Discussion Papers.
  65. Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
  66. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn’t in Reduced-Form and Structural Models," Working Papers 819, Barcelona Graduate School of Economics.
  67. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.
  68. Gianluca Cubadda & Barbara Guardabascio, 2010. "A Medium-N Approach to Macroeconomic Forecasting," CEIS Research Paper 176, Tor Vergata University, CEIS, revised 09 Dec 2010.
  69. Petre Caraiani, 2014. "Do money and financial variables help forecasting output in emerging European Economies?," Empirical Economics, Springer, vol. 46(2), pages 743-763, March.
  70. Nikolaus Hautsch & Fuyu Yang, 2014. "Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth," University of East Anglia Applied and Financial Economics Working Paper Series 056, School of Economics, University of East Anglia, Norwich, UK..
  71. Domenico Giannone & Michèle Lenza & Huw Pill & Lucrezia Reichlin, 2010. "Non‐Standard Monetary Policy Measures," Working Papers ECARES ECARES 2010-040, ULB -- Universite Libre de Bruxelles.
  72. Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, School of Economics and Management, University of Aarhus.
  73. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting Real House Price of the U.S.: An Analysis Covering 1890 to 2012," Working Papers 201362, University of Pretoria, Department of Economics.
  74. Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
  75. Robinson Durán & Evelyn Garrido & Carolina Godoy & Juan de Dios Tena, 2012. "Predicción de la inflación en México con modelos desagregados por componente," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 27(1), pages 133-167.
  76. Jennifer Castle & David Hendry, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
  77. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel vector autoregressive models: a survey," Working Paper Series 1507, European Central Bank.
  78. Haroon Mumtaz & Nitin Kumar, 2012. "An application of data-rich environment for policy analysis of the Indian economy," Joint Research Papers 2, Centre for Central Banking Studies, Bank of England.
  79. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
  80. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  81. Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012. "Global commodity cycles and linkages: a FAVAR approach," Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
  82. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
  83. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
  84. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
  85. Carlo Altavilla & Domenico Giannone & Michele Lenza, 2014. "The Financial and Macroeconomic Effects of the OMT Announcements," CSEF Working Papers 352, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  86. Luigi Paciello, 2011. "Does Inflation Adjust Faster to Aggregate Technology Shocks than to Monetary Policy Shocks?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(8), pages 1663-1684, December.
  87. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
  88. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
  89. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
  90. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
  91. Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank, Research Department.
  92. Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2012. "Sparse partial least squares in time series for macroeconomic forecasting," Statistics and Econometrics Working Papers ws122216, Universidad Carlos III, Departamento de Estadística y Econometría.
  93. Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper Series 05_14, The Rimini Centre for Economic Analysis.
  94. Deryugina , Elena & Ponomarenko , Alexey, 2014. "A large Bayesian vector autoregression model for Russia," BOFIT Discussion Papers 22/2014, Bank of Finland, Institute for Economies in Transition.
  95. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  96. Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, School of Economics and Management, University of Aarhus.
  97. Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
  98. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
  99. Adina Popescu & Alina Carare, 2011. "Monetary Policy and Risk-Premium Shocks in Hungary; Results from a Large Bayesian VAR," IMF Working Papers 11/259, International Monetary Fund.
  100. Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.