IDEAS home Printed from https://ideas.repec.org/p/wbs/wpaper/wpn06-04.html
   My bibliography  Save this paper

Forecasting Volatility and Volume in the Tokyo Stock Market: Long Memory, Fractality and Regime Switching

Author

Listed:
  • Thomas Lux
  • Taisei Kaizoji

Abstract

We investigate the predictability of both volatility and volume for a large sample of Japanese stocks. The particular emphasis of this paper is on assessing the performance of long memory time series models in comparison to their short-memory counterparts. Since long memory models should have a particular advantage over long forecasting horizons, we consider predictions of up to 100 days ahead. In most respects, the long memory models (ARFIMA, FIGARCH and the recently introduced multifractal model) dominate over GARCH and ARMA models. However, while FIGARCH and ARFIMA also have quite a number of cases with dramatic failures of their forecasts, the multifractal model does not suffer from this shortcoming and its performance practically always improves upon the na?ve forecast provided by historical volatility. As a somewhat surprising result, we also find that, for FIGARCH and ARFIMA models, pooled estimates (i.e. averages of parameter estimates from a sample of time series) give much better results than individually estimated models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Thomas Lux & Taisei Kaizoji, 2006. "Forecasting Volatility and Volume in the Tokyo Stock Market: Long Memory, Fractality and Regime Switching," Working Papers wpn06-04, Warwick Business School, Finance Group.
  • Handle: RePEc:wbs:wpaper:wpn06-04
    as

    Download full text from publisher

    File URL: http://web.warwick.ac.uk/fac/soc/financeRepec/Repec/2006/LuxKaizoji2006FVVTSM.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    2. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    3. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
    4. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    5. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    6. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    7. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    8. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    9. Basak, Gopal K & Chan, Ngai Hang & Palma, Wilfredo, 2001. "The Approximation of Long-Memory Processes by an ARMA Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 367-389, September.
    10. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    11. Christopher J. Neely & Paul A. Weller, 2002. "Predicting exchange rate volatility: genetic programming versus GARCH and RiskMetrics," Review, Federal Reserve Bank of St. Louis, issue May, pages 43-54.
    12. B. B. Mandelbrot, 2001. "Stochastic volatility, power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 558-559.
    13. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    14. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
    15. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    16. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    17. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    18. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
    19. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
    20. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    22. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    23. Tse, Y. K., 1991. "Stock returns volatility in the Tokyo stock exchange," Japan and the World Economy, Elsevier, vol. 3(3), pages 285-298, November.
    24. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    25. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    26. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    27. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    28. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    29. Man, K. S., 2003. "Long memory time series and short term forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 477-491.
    30. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    31. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbs:wpaper:wpn06-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rong Leng). General contact details of provider: http://edirc.repec.org/data/fewaruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.