IDEAS home Printed from https://ideas.repec.org/p/wbs/wpaper/wp09-02.html
   My bibliography  Save this paper

Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise

Author

Listed:
  • Ingmar Nolte
  • Valeri Voev

Abstract

The expected value of sums of squared intraday returns (realized variance) gives rise to a least squares regression which adapts itself to the assumptions of the noise process and allows for a joint inference on integrated volatility (IV), noise moments and price-noise relations. In the iid noise case we derive the asymptotic variance of the regression parameter estimating the IV, show that it is consistent and compare its asymptotic efficiency against alternative consistent IV measures. In case of noise which is correlated with the efficient return process, we postulate a new “asymptotically increasing” type of dependence and analyze its ability to cope with the empirically observed price-noise dependence in quote data. In the empirical section of the paper we apply the LS methodology to estimate the integrated volatility as well as the noise properties of 25 liquid stocks both with midquote and transaction price data. We find that while iid noise is an oversimplification, its non-iid characteristics have a decidedly negligible effect on volatility estimation within our framework, for which we provide a sound theoretical reason. In terms of noise-price endogeneity, we are not able o find empirical support for simple ad hoc theoretical models and we provide an alternative explanation for the observed patterns in midquote data, based on market microstructure theory.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ingmar Nolte & Valeri Voev, 2009. "Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise," Working Papers wp09-02, Warwick Business School, Finance Group.
  • Handle: RePEc:wbs:wpaper:wp09-02
    as

    Download full text from publisher

    File URL: http://www2.warwick.ac.uk/fac/soc/wbs/research/wfri/rsrchcentres/ferc/wrkingpaprseries/fwp09-02.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roel C. A. Oomen, 2005. "Properties of Bias-Corrected Realized Variance Under Alternative Sampling Schemes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 555-577.
    2. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    5. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. repec:oxf:wpaper:264 is not listed on IDEAS
    9. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    10. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    11. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    12. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    13. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2011-002, ULB -- Universite Libre de Bruxelles.
    2. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    3. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(2), pages 383-417.
    4. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbs:wpaper:wp09-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rong Leng). General contact details of provider: http://edirc.repec.org/data/fewaruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.