IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the Origins of Conditional Heteroscedasticity in Time Series

  • Richard Ashley

The volatility clustering frequently observed in financial/economic time series is often ascribed to GARCH and/or stochastic volatility models. This paper demonstrates the usefulness of re- conceptualizing the usual definition of conditional heteroscedasticity as the (h = 1) special case of h-step-ahead conditional heteroscedasticity, where the conditional volatility in period t depends on observable variables up through period t - h. Here it is shown that, for h > 1, h-step-ahead conditional heteroscedasticity arises – necessarily and endogenously – from nonlinear serial dependence in a time series; whereas one-step-ahead conditional heteroscedasticity (i.e., h= 1) requires multiple and heterogeneously-skedastic innovation terms. Consequently, the best response to observed volatility clustering may often be to model the nonlinear serial dependence which is likely causing it, rather than ‘tacking on’ an ad hoc volatility model. Even where such nonlinear modeling is infeasible – or where volatility is quantified using, say, a model-free implied volatility measure rather than squared returns – these results suggest a re-consideration of the usefulness of lag-one terms in volatility models. An application to observed daily stock returns is given.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://repec.econ.vt.edu/Papers/Ashley/origins_of_conditional_heteroscedasticity.pdf
File Function: First version, 2010
Download Restriction: no

Paper provided by Virginia Polytechnic Institute and State University, Department of Economics in its series Working Papers with number e07-23.

as
in new window

Length: 32 pages
Date of creation: 2010
Date of revision:
Handle: RePEc:vpi:wpaper:e07-23
Contact details of provider: Postal: 3016 Pamplin Hall, Blacksburg, VA 24061-0316
Phone: 540-231-9636
Fax: 540-231-5097
Web page: http://www.econ.vt.edu
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:vpi:wpaper:e07-23. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Djavad Salehi-Isfahani)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.