IDEAS home Printed from
   My bibliography  Save this paper

Stochastic approximation, Momentum, and Nash play



Main objects here are normal-form games, featuring uncertainty and noncooperative players who entertain local visions, form local approximations, and hesitate in making large, swift adjustments. For the purpose of reaching Nash equilibrium, or learning such play, we advocate and illustrate an algorithm that combines stochastic gradient projection with the heavyball method. What emerges is a coupled, constrained, second-order stochastic process. Some friction feeds into and stabilizes myopic approximations. Convergence to Nash play obtains under seemingly weak and natural conditions, an important one being that accumulated marginal payoffs remains bounded above.

Suggested Citation

  • Berglann, Helge & Flåm, Sjur, 2002. "Stochastic approximation, Momentum, and Nash play," Working paper Series 0209, Department of Economics, University of Bergen.
  • Handle: RePEc:uib:bereco:0209

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Noncooperative games; Nash equilibrium; stochastic programming and approximation; the heavy ball method.;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uib:bereco:0209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bjørn Sandvik). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.