IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The fixed effects estimator of technical efficiency

  • Wikström, Daniel
Registered author(s):

    Firms and organizations, public or private, often operate on markets characterized by non-competitiveness. For example agricultural activities in the western world are heavily subsidized and electricity is supplied by firms with market power. In general it is probably more difficult to find firms that act on highly competitive markets, than firms that are not. To measure different types of inefficiencies, due to this lack of competitiveness, has been an ongoing issue, since at least the 1950s when several definitions of inefficiency was proposed and since the late 1970s as stochastic frontier analysis. In all three articles presented in this thesis the stochastic frontier analysis approach is considered. Furthermore, in all three articles focus is on technical inefficiency. The ways to estimate technical inefficiency, based on stochastic frontier models, are numerous. However, focus in this thesis is on fixed effects panel data estimators. This is mainly for two reasons. First, the fixed effects analysis does not demand explicit distributional assumptions of the inefficiency and the random error of the model. Secondly, the analysis does not require the random effects assumption of independence between the firm specific inefficiency and the inputs selected by the very same firm. These two properties are exclusive for fixed effects estimation, compared to other stochastic frontier estimators. There are of course flaws attached to fixed effects analysis as well, and the contribution of this thesis is to probe some of these flaws, and to propose improvements and tools to identify the worst case scenarios. For example the fixed effects estimator is seriously upward biased in some cases, i.e. inefficiency is overestimated. This could lead to false conclusions, like e.g. that subsidies in agriculture lead to severely inefficient farmers even if these farmers in reality are quite homogenous. In this thesis estimators to reduce bias as well as mean square error are proposed and statistical diagnostics are designed to identify worst case scenarios for the fixed effects estimator as well as for other estimators. The findings can serve as important tools for the applied researcher, to obtain better approximations of technical inefficiency.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://pub.epsilon.slu.se/9101/
    Download Restriction: no

    Paper provided by Swedish University of Agricultural Sciences, Department of Economics in its series Department of Economics publications with number 9101.

    as
    in new window

    Length:
    Date of creation: 16 Nov 2012
    Date of revision:
    Handle: RePEc:sua:ekonwp:9101
    Contact details of provider: Postal: Box 7013, 750 07 UPPSALA
    Phone: 018-67 1724
    Fax: 018-67 3502
    Web page: http://www.slu.se/ekonomi

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Ouyang, Desheng & Li, Qi & Racine, Jeffrey S., 2009. "Nonparametric Estimation Of Regression Functions With Discrete Regressors," Econometric Theory, Cambridge University Press, vol. 25(01), pages 1-42, February.
    2. William Greene, 2002. "Fixed and Random Effects in Stochastic Frontier Models," Working Papers 02-16, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Myungsup Kim & Yangseon Kim & Peter Schmidt, 2006. "On the Accuracy of Bootstrap Confidence Intervals for Efficiency Levels in Stochastic Frontier Models with Panel Data," Working Papers 0704, University of Crete, Department of Economics.
    4. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1989. "Production Frontiers With Cross-Sectinal And Time-Series Variation In Efficiency Levels," Working Papers 89-18, C.V. Starr Center for Applied Economics, New York University.
    5. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-74, October.
    6. Qu Feng & William C. Horrace, 2010. "Alternative Technical Efficiency Measures: Skew, Bias, and Scale," Center for Policy Research Working Papers 121, Center for Policy Research, Maxwell School, Syracuse University.
    7. Wang, Wei Siang & Schmidt, Peter, 2009. "On the distribution of estimated technical efficiency in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 148(1), pages 36-45, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sua:ekonwp:9101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alejandro Engelmann)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.