IDEAS home Printed from https://ideas.repec.org/p/sua/ekonwp/88.html
   My bibliography  Save this paper

Modelling Agricultural Production Systems using Mathematical Programming

Author

Listed:
  • Ekman, Sone

Abstract

This thesis focuses on the economics of changing farm-level production practices. It is recognised that many decisions made in a firm or a market are interrelated. Economic analyses aiming at predicting behaviour or recommending on alternatives for action need to account for these relations, otherwise the results and prescriptions will be misleading. In each of the four articles a mathematical programming model of an agricultural production system is developed, and empirical analyses are performed using Swedish data. The first article analyses aggregate effects of on-farm potato processing, utilising a partial equilibrium framework. An analysis of the Swedish potato market shows that, in more densely populated regions, on-farm processing is a part of a socially optimal industry structure. Increased import competition results in a larger share of domestic potatoes being processed at the farm-level. In article II, alternative tillage systems for grain production are evaluated. A mathematical programming model with simultaneous selection of crop rotation, machinery investments and scheduling of tillage and drilling operations is developed, utilising discrete stochastic programming to model field time variability. The empirical results show that a tillage system characterised by lower machinery capital and labour requirements may be as profitable as a conventional system. The model from article II is further developed in article III and IV. Article III recognises that policy measures aiming at reducing nitrogen leaching from crop production often have indirect effects. As an example, the empirical results show that subsidies to catch crops and spring ploughing provide an incentive to increase the area of spring crops, such that these subsidies may increase rather than reduce nitrogen emissions. In article III it is also concluded that cost-effective nitrogen abatement requires a mix of various adjustments of production practices, rather than a focus on a few measures. Article IV analyses whether it is necessary to account for environmental and economic risk when analysing measures to reduce nitrogen leaching in crop production. Considering environmental risk increases abatement costs. However, it appears that the benefits from explicitly accounting for nitrogen leaching variability (environmental risk) in the model are rather small, since the majority of the environmental risk is non-diversifiable. The benefits from including economic risk associated with income variability seem

Suggested Citation

  • Ekman, Sone, 2002. "Modelling Agricultural Production Systems using Mathematical Programming," Department of Economics publications 88, Swedish University of Agricultural Sciences, Department of Economics.
  • Handle: RePEc:sua:ekonwp:88
    as

    Download full text from publisher

    File URL: http://pub.epsilon.slu.se/88/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Archer, David W. & Shogren, Jason F., 2001. "Risk-indexed herbicide taxes to reduce ground and surface water pollution: an integrated ecological economics evaluation," Ecological Economics, Elsevier, vol. 38(2), pages 227-250, August.
    2. Ing-Marie Gren & Paul Jannke & Katarina Elofsson, 1997. "Cost-Effective Nutrient Reductions to the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(4), pages 341-362, December.
    3. Yiridoe, Emmanuel K. & Weersink, Alfons, 1998. "Marginal Abatement Costs Of Reducing Groundwater-N Pollution With Intensive And Extensive Farm Management Choices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 27(2), October.
    4. Arun S. Malik & David Letson & Stephen R. Crutchfield, 1993. "Point/Nonpoint Source Trading of Pollution Abatement: Choosing the Right Trading Ratio," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 959-967.
    5. Barrett, Scott, 1994. "Self-Enforcing International Environmental Agreements," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 878-894, Supplemen.
    6. Beavis, Brian & Walker, Martin, 1983. "Achieving environmental standards with stochastic discharges," Journal of Environmental Economics and Management, Elsevier, vol. 10(2), pages 103-111, June.
    7. Naevdal, Eric, 1999. "Optimal Regulation Of Eutrophying Lakes, Fjords And Rivers In The Presence Of Threshold Effects," 1999 Annual meeting, August 8-11, Nashville, TN 21619, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. C. S. Kim & John E. Hostetler, 1991. "Policy Implications of a Water Quality-constrained Dynamic Model of Nitrogen Fertilizer Use," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 39(4), pages 781-791, December.
    9. Robert G. Chambers & Erik Lichtenberg, 1996. "A Nonparametric Approach to the von Liebig-Paris Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 373-386.
    10. Hart, Rob, 2003. "Dynamic pollution control--time lags and optimal restoration of marine ecosystems," Ecological Economics, Elsevier, vol. 47(1), pages 79-93, November.
    11. Rob van der Veeren & Richard Tol, 2001. "Benefits of a Reallocation of Nitrate Emission Reductions in the Rhine River Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 19-41, January.
    12. Markowska, Agnieszka & Zylicz, Tomasz, 1999. "Costing an international public good: the case of the Baltic Sea," Ecological Economics, Elsevier, vol. 30(2), pages 301-316, August.
    13. Segerson, Kathleen, 1988. "Uncertainty and incentives for nonpoint pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 15(1), pages 87-98, March.
    14. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, November.
    15. Darrell J. Bosch & James W. Pease, 2000. "Economic Risk and Water Quality Protection in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 22(2), pages 438-463.
    16. Johnsen, Fred H, 1993. "Economic Analyses of Measures to Control Phosphorus Run-Off from Non-point Agricultural," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 20(4), pages 399-418.
    17. Albaek, Svend, 1990. "Stackelberg Leadership as a Natural Solution under Cost Uncertainty," Journal of Industrial Economics, Wiley Blackwell, vol. 38(3), pages 335-347, March.
    18. Fleming, R. A. & Adams, R. M., 1997. "The Importance of Site-Specific Information in the Design of Policies to Control Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 33(3), pages 347-358, July.
    19. Bystrom, Olof & Andersson, Hans & Gren, Ing-Marie, 2000. "Economic criteria for using wetlands as nitrogen sinks under uncertainty," Ecological Economics, Elsevier, vol. 35(1), pages 35-45, October.
    20. Winston Harrington & Richard D. Morgenstern & Peter Nelson, 2000. "On the accuracy of regulatory cost estimates," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 297-322.
    21. Sadanand, Asha & Sadanand, Venkatraman, 1996. "Firm Scale and the Endogenous Timing of Entry: a Choice between Commitment and Flexibility," Journal of Economic Theory, Elsevier, vol. 70(2), pages 516-530, August.
    22. Beavis, Brian & Walker, Martin, 1979. "Interactive pollutants and joint abatement costs: Achieving water quality standards with effluent charges," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 275-286, December.
    23. van Damme, Eric & Hurkens, Sjaak, 1999. "Endogenous Stackelberg Leadership," Games and Economic Behavior, Elsevier, vol. 28(1), pages 105-129, July.
    24. Peter Berck & Jacqueline Geoghegan & Stephen Stohs, 2000. "A Strong Test of the von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, pages 948-955.
    25. Richard Horan, 2001. "Cost-Effective and Stochastic Dominance Approaches to Stochastic Pollution Control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(4), pages 373-389, April.
    26. Wier, Mette & Hasler, Berit, 1999. "Accounting for nitrogen in Denmark--a structural decomposition analysis," Ecological Economics, Elsevier, vol. 30(2), pages 317-331, August.
    27. Turner, R. Kerry & Georgiou, Stavros & Gren, Ing-Marie & Wulff, Fredric & Barrett, Scott & Soderqvist, Tore & Bateman, Ian J. & Folke, Carl & Langaas, Sindre & Zylicz, Tomasz, 1999. "Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study," Ecological Economics, Elsevier, vol. 30(2), pages 333-352, August.
    28. Goetz, Renan U. & Zilberman, David, 2000. "The dynamics of spatial pollution: The case of phosphorus runoff from agricultural land," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 143-163, January.
    29. McSweeny, William T. & Shortle, James S., 1990. "Probabilistic Cost Effectiveness In Agricultural Nonpoint Pollution Control," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 22(01), July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sua:ekonwp:88. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alejandro Engelmann). General contact details of provider: http://edirc.repec.org/data/iesluse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.