IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Interactive contagion

  • Lee, I.H.
  • Valentinyi, A.

A local interaction game is a game where agents play an identical stage game against their neighbors over time. This paper obtains a general result on the long-run equilibrium distribution of the local interaction game whose stage game is the 2 x 2 coordination game. It is established that starting from a random initial configuration with a positive probability of playing the risk dominant strategy, a sufficiently large population coordinates on the risk dominant equilibrium with probability 1 for the nearest neighbor interaction Our result improves previous ones including Blume (1995), Ellison (1993,1995), and Morris (1997) in a non-trivial way. It proves that there is an interactive contagion mechanism through which the risk dominant equilibrium may spread, in addition to the autonomous mechanism considered by others. Taking advantage of the mechanism we prove that for the nearest neighbor interaction, half dominance is sufficient for the degenerate long-run equilibrium distribution concentrated on the risk dominant strategy.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Economics Division, School of Social Sciences, University of Southampton in its series Discussion Paper Series In Economics And Econometrics with number 9712.

as
in new window

Length:
Date of creation: 01 Jan 1997
Date of revision:
Handle: RePEc:stn:sotoec:9712
Contact details of provider: Postal: Highfield, Southampton SO17 1BJ
Phone: (+44) 23 80592537
Fax: (+44) 23 80593858
Web page: http://www.economics.soton.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tian, Guoqiang, 1988. "On the constrained Walrasian and Lindahl correspondences," Economics Letters, Elsevier, vol. 26(4), pages 299-303.
  2. Hurwicz, Leonid, 1979. "On allocations attainable through Nash equilibria," Journal of Economic Theory, Elsevier, vol. 21(1), pages 140-165, August.
  3. Hurwicz, L, 1979. "Outcome Functions Yielding Walrasian and Lindahl Allocations at Nash Equilibrium Points," Review of Economic Studies, Wiley Blackwell, vol. 46(2), pages 217-25, April.
  4. Groves, Theodore & Ledyard, John O., 1978. "The Existence of Efficient and Incentive Compatible Equilibria with Public Goods," Working Papers 203, California Institute of Technology, Division of the Humanities and Social Sciences.
  5. Groves, Theodore & Ledyard, John O, 1977. "Optimal Allocation of Public Goods: A Solution to the "Free Rider" Problem," Econometrica, Econometric Society, vol. 45(4), pages 783-809, May.
  6. Tian, Guoqiang, 1989. "Implementation of the Lindahl Correspondence by a Single-Valued, Feasible, and Continuous Mechanism," Review of Economic Studies, Wiley Blackwell, vol. 56(4), pages 613-21, October.
  7. Laffont, Jean-Jacques & Maskin, Eric, 1980. "A Differential Approach to Dominant Strategy Mechanisms," Econometrica, Econometric Society, vol. 48(6), pages 1507-20, September.
  8. Postlewaite, Andrew & Wettstein, David, 1989. "Feasible and Continuous Implementation," Review of Economic Studies, Wiley Blackwell, vol. 56(4), pages 603-11, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:stn:sotoec:9712. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Thorn)

The email address of this maintainer does not seem to be valid anymore. Please ask Chris Thorn to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.