IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

  • Robert K. Kaufmann

    ()

    (Department of Geography and Center for Energy and Environmental Studies, Boston University, Boston, MA 02215, USA)

  • David I. Stern

    ()

    (Department of Economics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA)

The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing three aspects of a GCM's ability to reconstruct the historical record for global surface temperature: (1) how well the GCMs track observed temperature; (2) are the residuals from GCM simulations random (white noise) or are they systematic (red noise or a stochastic trend); (3) what is the explanatory power of the GCMs compared to a simple alternative time series model, which assumes that temperature is a linear function of radiative forcing. The results indicate that three of the eight experiments considered fail to reconstruct temperature accurately; the GCM errors are either red noise processes or contain a systematic error, and the radiative forcing variable used to simulate the GCM's have considerable explanatory power relative to GCM simulations of global temperature. The GFDL model is superior to the other models considered. Three out of four Hadley Centre experiments also pass all the tests but show a poorer goodness of fit. The Max Planck model appears to perform poorly relative to the other two models. It does appear that there is a trade-off between the greater spatial detail and number of variables provided by the GCMs and more accurate predictions generated by simple time series models. This is similar to the debate in economics regarding the forecasting accuracy of large macro-economic models versus simple time series models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.rpi.edu/workingpapers/rpi0411.pdf
Download Restriction: no

Paper provided by Rensselaer Polytechnic Institute, Department of Economics in its series Rensselaer Working Papers in Economics with number 0411.

as
in new window

Length:
Date of creation: May 2004
Date of revision:
Handle: RePEc:rpi:rpiwpe:0411
Contact details of provider: Web page: http://www.economics.rpi.edu/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  2. Hausman, Jerry A, 1978. "Specification Tests in Econometrics," Econometrica, Econometric Society, vol. 46(6), pages 1251-71, November.
  3. Jinyong Hahn & Jerry Hausman, 1999. "A New Specification Test for the Validity of Instrumental Variables," Working papers 99-11, Massachusetts Institute of Technology (MIT), Department of Economics.
  4. Peter C.B. Phillips, 1985. "Understanding Spurious Regressions in Econometrics," Cowles Foundation Discussion Papers 757, Cowles Foundation for Research in Economics, Yale University.
  5. Hiro Y. Toda & Peter C.B. Phillips, 1991. "The Spurious Effect of Unit Roots on Exogeneity Tests in Vector Autoregressions: An Analytical Study," Cowles Foundation Discussion Papers 978, Cowles Foundation for Research in Economics, Yale University.
  6. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
  7. David I. Stern, 2004. "A Multicointegration Model of Global Climate Change," Rensselaer Working Papers in Economics 0406, Rensselaer Polytechnic Institute, Department of Economics.
  8. Jerry Hausman, 2001. "Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 57-67, Fall.
  9. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  10. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rpi:rpiwpe:0411. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shawn Kantor)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.