IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/wp523.html
   My bibliography  Save this paper

A Bootstrap Procedure for Panel Datasets with Many Cross-Sectional Units

Author

Listed:

Abstract

This paper considers the issue of bootstrap resampling in panel datasets. The availability of datasets with large temporal and cross sectional dimensions suggests the possibility of new resampling schemes. We suggest one possibility which has not been widely explored in the literature. It amounts to constructing bootstrap samples by resampling whole cross sectional units with replacement. In cases where the data do not exhibit cross sectional dependence but exhibit temporal dependence, such a resampling scheme is of great interest as it allows the application of i.i.d. bootstrap resampling rather than block bootstrap resampling. It is well known that the former enables superior approximation to distributions of statistics compared to the latter. We prove that the bootstrap based on cross sectional resampling provides asymptotic refinements. A Monte Carlo study illustrates the superior properties of the new resampling scheme compared to the block bootstrap.

Suggested Citation

  • George Kapetanios, 2004. "A Bootstrap Procedure for Panel Datasets with Many Cross-Sectional Units," Working Papers 523, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:wp523
    as

    Download full text from publisher

    File URL: https://www.qmul.ac.uk/sef/media/econ/research/workingpapers/archive/wp523.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    3. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    4. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
    2. Necati Tekatli, 2007. "Generalized Factor Models: A Bayesian Approach," Working Papers 334, Barcelona Graduate School of Economics.
    3. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    4. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    5. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    6. Gregory Connor & Matthias Hagmann & Oliver Linton, 2007. "Efficient Estimation of a Semiparametric Characteristic- Based Factor Model of Security Returns," Swiss Finance Institute Research Paper Series 07-26, Swiss Finance Institute.
    7. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    8. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    9. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    10. Necati Tekatli, 2010. "A Bayesian Generalized Factor Model with Comparative Analysis (Genellestirilmis Faktor Modellerinin Bayesyen Yaklasimi ve Karsilastirmali Analizi)," Working Papers 1018, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    11. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
    12. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    14. Corielli, Francesco & Marcellino, Massimiliano, 2006. "Factor based index tracking," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
    15. Eric Bataille & Catherine Bruneau & Frederic Michaud, 2007. "Business cycle and corporate failure in France: Is there a link?," Computational Economics, Springer;Society for Computational Economics, vol. 29(2), pages 173-197, March.
    16. Cimadomo, Jacopo & Bénassy-Quéré, Agnès, 2012. "Changing patterns of fiscal policy multipliers in Germany, the UK and the US," Journal of Macroeconomics, Elsevier, vol. 34(3), pages 845-873.
    17. Kristensen Johannes Tang, 2014. "Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 1-30, May.
    18. António Rua, 2011. "A wavelet approach for factor‐augmented forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 666-678, November.
    19. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    20. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.

    More about this item

    Keywords

    Bootstrap; Panel data;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp523. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen The email address of this maintainer does not seem to be valid anymore. Please ask Nicholas Owen to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.