IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/wp466.html
   My bibliography  Save this paper

Factor Analysis Using Subspace Factor Models: Some Theoretical Results and an Application to UK Inflation Forecasting

Author

Listed:

Abstract

Recent work in the macroeconometric literature considers the problem of summarising efficiently a large set of variables and using this summary for a variety of purposes including forecasting. Work in this field has been carried out in a series of recent papers. This paper provides an alternative method for estimating factors derived from a factor state space model. This model has a clear dynamic interpretation. Further, the method does not require iterative estimation techniques and due to a modification introduced, can accommodate cases where the number of variables exceeds the number of observations. The computational cost and robustness of the method is comparable to that of principal component analysis because matrix algebraic methods are used.

Suggested Citation

  • George Kapetanios, 2002. "Factor Analysis Using Subspace Factor Models: Some Theoretical Results and an Application to UK Inflation Forecasting," Working Papers 466, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:wp466
    as

    Download full text from publisher

    File URL: http://www.econ.qmul.ac.uk/media/econ/research/workingpapers/archive/wp466.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
    2. Kapetanios, George, 2004. "A note on modelling core inflation for the UK using a new dynamic factor estimation method and a large disaggregated price index dataset," Economics Letters, Elsevier, vol. 85(1), pages 63-69, October.
    3. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
    4. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, "undated". "Automatic Leading Indicators (ALIs) versus Macro Econometric Structural Models (MESMs): Comparison of Inflation and GDP growth Forecasting," EcoMod2007 23900072, EcoMod.

    More about this item

    Keywords

    Factor models; Subspace methods; State space models;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp466. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Owen). General contact details of provider: http://edirc.repec.org/data/deqmwuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.