IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Measuring and forecasting financial variability using realised variance with and without a model

  • Carla Ysusi
  • Bent Nielsen

We use high frequency financial data to proxy, via the realised variance, each days financial variability. Based on a semiparametric stochastic volatility process, a limit theory shows you can represent the proxy as a true underlying variability plus some measurement noise with known characteristics. Hence filtering, smoothing and forecasting ideas can be used to improve our estimates of variability by exploiting the time series structure of the realised variances. This can be carried out based on a model or without a model. A comparison is made between these two methods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nuff.ox.ac.uk/economics/papers/2002/w21/jim.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 2002-W21.

as
in new window

Length:
Date of creation: 01 Oct 2002
Date of revision:
Handle: RePEc:oxf:wpaper:2002-w21
Contact details of provider: Postal: Manor Rd. Building, Oxford, OX1 3UQ
Web page: http://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
  2. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  3. James M. Poterba & Lawrence H. Summers, 1984. "The Persistence of Volatility and Stock Market Fluctuations," NBER Working Papers 1462, National Bureau of Economic Research, Inc.
  4. Elena Andreou & Eric Ghysels, 2000. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation and Empirical Results," CIRANO Working Papers 2000s-19, CIRANO.
  5. Sangjoon Kim, Neil Shephard & Siddhartha Chib, . "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
  6. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
  7. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  8. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.
  9. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  10. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  11. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-53, December.
  12. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  13. Neil Shephard & Ole E. Barndorff-Nielsen, 2002. "Realised power variation and stochastic volatility models," Economics Series Working Papers 2001-W18, University of Oxford, Department of Economics.
  14. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
  16. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  17. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
  18. Harvey, A. C., 1986. "The effects of seat belt legislation on British road casualities: A case study in structural modelling : A.C. Harvey and J. Durbing, Journal of the Royal Statistical Society, Series A 149 (1986) (in p," International Journal of Forecasting, Elsevier, vol. 2(4), pages 496-497.
  19. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  20. Ib M. Skovgaard, 2001. "Likelihood Asymptotics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 3-32.
  21. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  22. Back, Kerry, 1991. "Asset pricing for general processes," Journal of Mathematical Economics, Elsevier, vol. 20(4), pages 371-395.
  23. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:2002-w21. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Caroline Wise)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.