IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimating Parameters in Autoregressive Models with Asymmetric Innovations

  • Wing-Keung Wong

    (National University of Singapore)

  • Guorui Bian

    (East China Normal University, China)

Tiku et al (1999) considered the estimation in a regression model with autocorrelated error in which the underlying distribution be a shift-scaled Student’s t distribution, developed the modified maximum likelihood (MML) estimators of the parameters and showed that the proposed estimators had closed forms and were remarkably efficient and robust. In this paper, we extend the results to the case, where the underlying distribution is a generalized logistic distribution. The generalized logistic distribution family represents very wide skew distributions ranging from highly right skewed to highly left skewed. Analogously, we develop the MML estimators since the ML (maximum likelihood) estimators are intractable for the generalized logistic data. We then study the asymptotic properties of the proposed estimators and conduct simulation to the study.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by National University of Singapore, Department of Economics in its series Departmental Working Papers with number wp0408.

in new window

Date of creation: 2004
Date of revision:
Handle: RePEc:nus:nusewp:wp0408
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Beach, Charles M & MacKinnon, James G, 1978. "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," Econometrica, Econometric Society, vol. 46(1), pages 51-58, January.
  2. Weiss, Andrew A., 1990. "Least absolute error estimation in the presence of serial correlation," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 127-158.
  3. Wing-keung Wong & Raymond Chan, 2004. "On the estimation of cost of capital and its reliability," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 365-372.
  4. Wong, Wing-Keung & Li, Chi-Kwong, 1999. "A note on convex stochastic dominance," Economics Letters, Elsevier, vol. 62(3), pages 293-300, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nus:nusewp:wp0408. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.