IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Modelling and Forecasting Multivariate Realized Volatility

Listed author(s):
  • Roxana Chiriac

    ()

    (Universität Konstanz)

  • Valeri Voev

This paper proposes a methodology for modelling time series of realized covariance matrices in order to forecast multivariate risks. The approach allows for flexible dynamic dependence patterns and guarantees positive definiteness of the resulting forecasts without imposing parameter restrictions. We provide an empirical application of the model, in which we show by means of stochastic dominance tests that the returns from an optimal portfolio based on the model’s forecasts second-order dominate returns of portfolios optimized on the basis of traditional MGARCH models. This result implies that any risk-averse investor, regardless of the type of utility function, would be better-off using our model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cofe.uni-konstanz.de/Papers/dp08_06.pdf
Download Restriction: no

Paper provided by Center of Finance and Econometrics, University of Konstanz in its series CoFE Discussion Paper with number 08-06.

as
in new window

Length: 34 pages
Date of creation: 01 Sep 2008
Handle: RePEc:knz:cofedp:0806
Contact details of provider: Postal:
Fach D 147, D-78457 Konstanz

Phone: +49-7531-88-2204
Fax: +49-7531-88-4450
Web page: http://cofe.uni-konstanz.de

More information through EDIRC

Order Information: Web: http://cofe.uni-konstanz.de Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Doornik Jurgen A & Ooms Marius, 2004. "Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-25, May.
  2. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  3. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  4. G. William Schwert, 1988. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  5. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
  6. Liudas Giraitis & Peter Robinson & Donatas Surgailis, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 2103, London School of Economics and Political Science, LSE Library.
  7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  8. Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
  9. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477451, December.
  10. Esfandiar Maasoumi & Michael McAleer, 2006. "Multivariate Stochastic Volatility: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 139-144.
  11. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
  12. Joan Jasiak & R. Sufana & C. Gourieroux, 2005. "The Wishart Autoregressive Process of Multivariate Stochastic Volatility," Working Papers 2005_2, York University, Department of Economics.
  13. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  14. Davidson, Russell & Duclos, Jean-Yves, 1998. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Cahiers de recherche 9805, Université Laval - Département d'économique.
  15. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  16. Liudas Giraitis & Peter M. Robinson & Donatas Surgailis, 2000. "A model for long memory conditional heteroscedasticity," LSE Research Online Documents on Economics 299, London School of Economics and Political Science, LSE Library.
  17. Ekkehart Boehmer & Charles M. Jones & Xiaoyan Zhang, 2008. "Which Shorts Are Informed?," Journal of Finance, American Finance Association, vol. 63(2), pages 491-527, 04.
  18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  19. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
  20. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  21. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, "undated". "Multivariate GARCH models: a survey," CORE Discussion Papers RP 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
  23. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  24. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  25. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
  26. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, 05.
  27. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
  28. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  29. Roel C.A. OOMEN, 2001. "Using high frequency stock market index data to calculate, model and forecast realized return variance," Economics Working Papers ECO2001/06, European University Institute.
  30. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  31. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
  32. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  33. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
  34. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  35. Mihaela Şerban & Anthony Brockwell & John Lehoczky & Sanjay Srivastava, 2007. "Modelling the Dynamic Dependence Structure in Multivariate Financial Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 763-782, 09.
  36. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  37. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models 2 volume set," Cambridge Books, Cambridge University Press, number 9780521478373, December.
  38. Fishburn, Peter C., 1980. "Continua of stochastic dominance relations for unbounded probability distributions," Journal of Mathematical Economics, Elsevier, vol. 7(3), pages 271-285, December.
  39. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  40. Kaur, Amarjot & Prakasa Rao, B.L.S. & Singh, Harshinder, 1994. "Testing for Second-Order Stochastic Dominance of Two Distributions," Econometric Theory, Cambridge University Press, vol. 10(05), pages 849-866, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:knz:cofedp:0806. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Nolte)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.