IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Optimal Convergence Rates in Nonparametric Regression with Fractional Time Series Errors

  • Yuanhua Feng


    (Heriot-Watt University, Edinburgh)

  • Jan Beran

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Center of Finance and Econometrics, University of Konstanz in its series CoFE Discussion Paper with number 07-15.

in new window

Length: 21 pages
Date of creation: 16 Jan 2007
Date of revision:
Handle: RePEc:knz:cofedp:0715
Contact details of provider: Postal: Fach D 147, D-78457 Konstanz
Phone: +49-7531-88-2204
Fax: +49-7531-88-4450
Web page:

More information through EDIRC

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Feng, Yuanhua & Beran, Jan & Yu, Keming, 2006. "Modelling financial time series with SEMIFAR-GARCH model," MPRA Paper 1593, University Library of Munich, Germany.
  2. repec:cep:stiecm:/2004/471 is not listed on IDEAS
  3. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
  4. Jan Beran, 1999. "SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity," CoFE Discussion Paper 99-16, Center of Finance and Econometrics, University of Konstanz.
  5. Hall, Peter & Hart, Jeffrey D., 1990. "Nonparametric regression with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 339-351, December.
  6. Jan Beran & Yuanhua Feng, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Paper 99-08, Center of Finance and Econometrics, University of Konstanz.
  7. Jan Beran & Yuanhua Feng, 2002. "Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors," Annals of the Institute of Statistical Mathematics, Springer, vol. 54(2), pages 291-311, June.
  8. Wolfgang Härdle & Julius Mungo, 2007. "Long Memory Persistence in the Factor of Implied Volatility Dynamics," SFB 649 Discussion Papers SFB649DP2007-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:knz:cofedp:0715. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ingmar Nolte)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.